
Introduction 

According to the National Highway Traffic Safety Administration, there were 10,142 
people killed in alcohol-impaired-driving crashes in 2019 (NHTSA, 2021). This equates to 
almost 28 fatalities per day, or approximately one person killed every 52 minutes due to 
alcohol-impaired-driving. The same NHTSA report estimates that the economic costs of 
alcohol-impaired-driving related fatalities was $44 billion in 2019. Additionally, traffic 
related fatalities in urban areas have increased by 34% from 2010 to 2019. Urban 
governments, such as the City of Philadelphia, must face these alarming statistics and enact 
policy focused on preventing alcohol-impaired-driving and the resulting fatalities. 

From 2008 to 2012, there were 53,260 car crashes in the City of Philadelphia, 1,369 
of which resulted in one or more of the drivers dying or being seriously injured, and 188 of 
those in which alcohol-impaired-driving was involved.  In this study, we used the statistical 
programming language, R, to build a logistic model to identify predictors of alcohol-
impaired-driving. Predictors studied included the type of collision (head-on, sideswipe, etc.), 
whether a cell phone was being used by a driver, and whether a driver was speeding or not. 
We found that crash types such as rear-ending, crashes at an angle, and hitting a fixed-object 
were associated with alcohol-impaired driving. We also found that alcohol-impaired-driving 
was not associated with driver demographics (drivers who are 16-17 or over 65) or driving 
while distracted or driving aggressively.  

Methods 

Limitations of OLS 

An Ordinary Least Squares (OLS) regression is used when the dependent variable is 
continuous. OLS produces a slope-intercept form equation that results in a predicted value 
of the dependent variable. OLS is not appropriate for use when the dependent variable is 
binary (0/1, True/False, etc.) because the model would contain coefficients and predicted 
values of the dependent variable for which would result in non-sensical interpretations. For 
instance, if we are trying to predict whether there is a library in a certain neighborhood (0 = 
no library present, 1 = present), an OLS equation would indicate that as some predictor 
variable, perhaps the total population of the neighborhood, increases by one unit, the 
dependent variable changes by the β-coefficient of the predictor variable. This could result 
in cases in which a fractional presence or absence of a library was predicted to occur in a 
particular neighborhood as the total population increased or decreased. However, since we 
are predicting whether a library will be present or not, and not the number of libraries in 
each neighborhood, OLS is not useful for these types of situations. For this reason, we use a 
different type of model known as a logistic regression. 



Logistic Regression 

The odds is the ratio of the probability a thing will happen over the probability it won’t. 

For example. Odds of event Y=1 can be calculated as: 

𝑶𝒅𝒅𝒔(𝒀 = 𝟏) =
# 𝒆𝒗𝒆𝒏𝒕 𝒀 = 𝟏

# 𝒆𝒗𝒆𝒏𝒕 𝒀 ≠ 𝟏
=

𝑷(𝒀 = 𝟏)

𝑷(𝒀 ≠ 𝟏)
=

𝒑

𝟏 − 𝒑
 

The odds ratio is the ratio of odds under two different conditions, a way to present the 

strength of association between risk factors/exposures and outcomes. The Odds Ratio can 

be calculated as:  

𝑶𝒅𝒅𝒔 𝑹𝒂𝒕𝒊𝒐(𝒀 = 𝟏) =
# 𝒐𝒅𝒅𝒔 𝒀 = 𝟏, 𝑿 = 𝒂 + 𝟏

# 𝒐𝒅𝒅𝒔 𝒀 = 𝟏, 𝑿 = 𝒂
=

𝑶𝒅𝒅𝒔(𝒀 = 𝟏|𝑿 = 𝒂 + 𝟏)

𝑶𝒅𝒅𝒔(𝒀 = 𝟏|𝑿 = 𝒂)
 

If Odds Ratio>1, that means greater odds of association with the exposure and outcome. 

If Odds Ratio=1, that means there is no association between exposure and outcome. 

If Odds Ratio<1, that means there is a lower odd of association between the exposure and 
outcome. 

The logit function is the natural log of the odds that Y equals one of the outcomes. The 

regression equation for the logit model with multiple predictors is listed below. 

𝑳𝒐𝒈𝒊𝒕 𝑭𝒐𝒓𝒎: 𝒍𝒏 (
𝑷(𝑫𝑹𝑰𝑵𝑲𝑰𝑵𝑮𝑫)

𝟏 − 𝑷(𝑫𝑹𝑰𝑵𝑲𝑰𝑵𝑮_𝑫)

)

= 𝜷𝟎 + 𝜷𝟏𝑭𝑨𝑻𝑨𝑳𝑶𝑹𝑴
+ 𝜷𝟐𝑶𝑽𝑬𝑹𝑻𝑼𝑹𝑵𝑬𝑫 + 𝜷𝟑𝑪𝑬𝑳𝑳𝑷𝑯𝑶𝑵𝑬 + 𝜷𝟒𝑺𝑷𝑬𝑬𝑫𝑰𝑵𝑮 + 𝜷𝟓𝑨𝑮𝑮𝑹𝑬𝑺𝑺𝑰𝑽𝑬

+ 𝜷𝟔𝑫𝑹𝑰𝑽𝑬𝑹𝟏𝟔𝟏𝟕 + 𝜷𝟕𝑫𝑹𝑰𝑽𝑬𝑹𝟔𝟓𝑷𝑳𝑼𝑺 + 𝜷𝟖𝑷𝑪𝑻𝑩𝑨𝑪𝑯𝑴𝑶𝑹 + 𝜷𝟗𝑴𝑬𝑫𝑯𝑯𝑰𝑵𝑪 + 𝜺 

 

In the logit form equation, 𝛽0  is the Y intercept (The odds that a driver whose crash didn’t 

result in fatality or major injury, didn’t involve an overturned vehicle, didn’t involve speeding 

car, didn’t involve aggressive driving, didn’t involve at least one driver who was 16 or 17 

years old, didn’t involve at least one driver who was at least 65 years old and who was not 

using cell phone will be a drinking driver).  𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛽7, 𝛽8, 𝛽9 are coefficients of 

variables FATAL_OR_M, OVERTURNED, CELL_PHONE, SPEEDING, AGGRESSIVE, 

DRIVER1617, DRIVER65PLUS, PCTBACHMOR, and MEDHHINC. The beta coefficients are the 

expected change in the log odds of the dependent variable being on TRUE or 1 or YES as the 

independent variable increases by one unit (holding other variables constant). 𝜀  is the 

residual (Present in the Logit Form). P is the probability of a car accident driver being a 

drinking driver.  



 The logistic function is the inversed logit function. A logistic function is a common S-shaped 

curve, shown as follows.  

For our study with multiple predictors, the logistic function is listed as follows. 

  
𝑳𝒐𝒈𝒊𝒔𝒕𝒊𝒄 𝑭𝒐𝒓𝒎: 𝑷(𝑫𝑹𝑰𝑵𝑲𝑰𝑵𝑮𝑫) 

=  
𝒆𝜷𝟎+𝜷𝟏𝑭𝑨𝑻𝑨𝑳𝑶𝑹𝑴

+𝜷𝟐𝑶𝑽𝑬𝑹𝑻𝑼𝑹𝑵𝑬𝑫+𝜷𝟑𝑪𝑬𝑳𝑳𝑷𝑯𝑶𝑵𝑬+𝜷𝟒𝑺𝑷𝑬𝑬𝑫𝑰𝑵𝑮+𝜷𝟓𝑨𝑮𝑮𝑹𝑬𝑺𝑺𝑰𝑽𝑬+𝜷𝟔𝑫𝑹𝑰𝑽𝑬𝑹𝟏𝟔𝟏𝟕+𝜷𝟕𝑫𝑹𝑰𝑽𝑬𝑹𝟔𝟓𝑷𝑳𝑼𝑺+𝜷𝟖𝑷𝑪𝑻𝑩𝑨𝑪𝑯𝑴𝑶𝑹+𝜷𝟗𝑴𝑬𝑫𝑯𝑯𝑰𝑵𝑪

𝟏 + 𝒆𝜷𝟎+𝜷𝟏𝑭𝑨𝑻𝑨𝑳_𝑶𝑹_𝑴+𝜷𝟐𝑶𝑽𝑬𝑹𝑻𝑼𝑹𝑵𝑬𝑫+𝜷𝟑𝑪𝑬𝑳𝑳_𝑷𝑯𝑶𝑵𝑬+𝜷𝟒𝑺𝑷𝑬𝑬𝑫𝑰𝑵𝑮+𝜷𝟓𝑨𝑮𝑮𝑹𝑬𝑺𝑺𝑰𝑽𝑬+𝜷𝟔𝑫𝑹𝑰𝑽𝑬𝑹𝟏𝟔𝟏𝟕+𝜷𝟕𝑫𝑹𝑰𝑽𝑬𝑹𝟔𝟓𝑷𝑳𝑼𝑺+𝜷𝟖𝑷𝑪𝑻𝑩𝑨𝑪𝑯𝑴𝑶𝑹+𝜷𝟗𝑴𝑬𝑫𝑯𝑯𝑰𝑵𝑪
 

 If 𝜷̂𝟎 + 𝜷̂𝟏𝒙𝟏 + ⋯ + 𝜷̂𝟗𝒙𝟗 = 𝟎, then p=0.5 which means the probability of each outcome of y is 

equal to 0.5. As 𝜷̂𝟎 + 𝜷̂𝟏𝒙𝟏 + ⋯ + 𝜷̂𝟗𝒙𝟗  gets big, p approaches 1, and as 𝜷̂𝟎 + 𝜷̂𝟏𝒙𝟏 + ⋯ + 𝜷̂𝟗𝒙𝟗 gets 

small, p approaches 0. This is exactly the type of “translator” function which successfully 
makes the interpretation of a binary dependent variable meaningful.  

Hypothesis for each predictor 

Then we do the hypotheses test for each predictor 𝑥𝑖  with the null hypotheses that the 

coefficient for 𝑥𝑖  ( 𝛽𝑖 ) is equal to 0, and alternative hypotheses that  𝛽𝑖 is not equal to 0. The 

quantity 𝜷̂𝒊−𝑬(𝜷̂𝒊)

𝝈𝜷̂𝒊

=
𝜷̂𝒊−𝟎

𝝈𝜷̂𝒊

=
𝜷̂𝒊

𝝈𝜷̂𝒊

 =  𝒛 is called Wald statistic which has a standard normal distribution, 

and the p-value for each 𝑧 can be obtained. Odd ratios (OR), which can be calculated by 𝑒  𝛽𝑖 , are 

most commonly examined by statisticians rather than estimated coefficients to interpretate the 

regression results. 

Assessment of the model fit 

To evaluate the fitness of models, logistic regression is capable of calculating a R-squared, 

but it is no longer a very useful metric and does not have the same interpretation as OLS. 

Instead Akaike Information Criterion (AIC) are more frequently used to evaluate the quality 

of model fit. In general, the Akaike information criterion (AIC) is an estimator of out-of-

sample prediction errors and thus of the relative quality of statistical models. Taking a set of 

models for data, the AIC calculates the quality of each model, relative to the others, and finally 

provides a means for model selection. Lower AIC values indicate a better-fit model, and a 



model with a delta-AIC (the difference between the two AIC values being compared) of more 

than -2 is considered significantly better than the model it is being compared to. 

On top of AIC, specificity, sensitivity, and the misclassification rate can also describe the 

quality of logistic models. Sensitivity (also known as the true positive rate) measures the 

proportion of actual positives which are correctly identified as such, and 

is complementary to the false negative rate. Similarly, specificity (also called the true 

negative rate) measures the proportion of negatives which are correctly identified as such, 

and is complementary to the false positive rate. Higher sensitivity and specificity values 

indicate better models. In addition, misclassification rate is the incorrect predictions 

proportion of total predictions, which will be lower for better fitted models. Here are the 

calculations for these three metrics:  

𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 =  
𝑻𝒖𝒓𝒆  𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅  𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆
       𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =  

𝑻𝒖𝒓𝒆  𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆

𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅  𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆
       𝑴𝒊𝒔𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏 𝑹𝒂𝒕𝒆 =  

𝑭𝒂𝒍𝒔𝒆  𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 

𝑻𝒐𝒕𝒂𝒍  𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 
 

When calculating the specificity, sensitivity and the misclassification rate, cut-offs are 

needed to identify what are relatively high probabilities. Considering that a best cut-off value 

may be determined by optimizing sensitivity, specificity and misclassification rate, we need 

try using a bunch of different cut-offs to find out the one with best accuracy.  Before 

identifying the cut-off, the possibility of Y = 1 (i.e. the predicted value of y) should be 

calculated by : 𝒚̂ = 𝒑(𝒀 = 𝟏) =  
𝒆𝜷𝟎+𝜷𝟏𝒙𝟏+𝜷𝟐𝒙𝟐+...+𝜷𝒊𝒙𝒊

𝟏+𝒆𝜷𝟎+𝜷𝟏𝒙𝟏+𝜷𝟐𝒙𝟐+...+𝜷𝒊𝒙𝒊
 , where 𝑥𝑖  is the value of predictors and 𝛽𝑖 is 

the coefficient of 𝑥𝑖 .  

 To calculate the optimal cut-off, the ROC curve method will be applied in this report. An 

ROC curve (receiver operating characteristic curve) is a graph showing the performance of 

a classification model at all classification thresholds. ROC curve plots two parameters - true 

positive rate and false positive rate. There are various ways to target the optimal cut-off, 

including Youden Index (A cut-off for which the sum of Sensitivity and Specificity is 

maximized, a cut-off for which the ROC curve has the minimum distance from the upper left 

corner of the graph (i.e., the point at which specificity = 1 and sensitivity = 1). Here, the later 

method will be applied. 

At last, to measure the prediction accuracy of the model, area under ROC Curve (AUC) 

need to be calculated. And higher AUCs are indicative of cut-off values for which both 

sensitivity and specificity of the model are relatively high. Here is a rough guide for 

classifying the accuracy: 0.9 -1 is excellent; 0.8 - 0.9 is good; 0.7 - 0.8 is fair; 0.6 - 0.7 is poor; 

0.5 - 0.6 is fail. 

The assumptions of logistic regression 

• Dependent Variable must be binary 

• Independence of observations 

• No severe multicollinearity 

• Larger samples 



Because MLE (and not least squares) is used to estimate regression coefficients. At least 50 
observations per predictor are needed. In the logistic regression, some assumptions of linear 
regression are still held such as “Independence of observations” and “No severe 
multicollinearity”. But in Logistic Regression. There’s no assumption that there needs to be 
a linear relationship between dependent variable and each independent variable. But logit 
of the independent variable should be linear correlated with dependent variable. And there 
are also no assumptions about homoscedasticity, and residuals don’t need to be normal. 
 

Exploratory Analyses 

The exploratory analyses used to prepare for a logistic regression differ from those that 

precede OLS. When both the dependent and predictor variables are categorical, it is useful 

to identify the proportion of occurrences of a predictor that are associated with the 

dichotomous outcomes of the dependent variable. These proportions were tabulated using 

the CrossTable function in R. Disparities in these proportions shed light on the relationship 

between the predictor variables and the dependent variable. Furthermore, while Pearson’s 

correlation is the statistical test used to measure the linear correlation between two 

continuous variables, the Chi-Square (χ2) test is used when the variables are categorical. For 

instance, if we were to observe the cross-tabulation of the variables CELL_PHONE and 

OVERTURNED, the null and alternative hypotheses for the χ2 test are as follows: 
 

𝑯𝟎: the proportion of overturned vehicles in crashes in which the driver was using a cell 

phone is the same as the proportion of overturned vehicles in crashes in which the driver was 

not using a cell phone.  

vs. 

𝑯𝒂: the proportion of overturned vehicles for crashes in which the driver was using a cell 

phone is different than the proportion of overturned vehicles in crashes in which the driver 

was not using a cell phone. 

 

When identifying the correlation between a continuous predictor variable and a 

dichotomous dependent variable, we calculate the means of the continuous variable 

associated with the two possible outcomes of the dependent variable. The independent 

samples t-test is the significance test used for this comparison. For instance, the null and 

alternative hypothesis for the independent samples t-test of the two continuous predictors 

in our study, PCTBACHMOR and MEDHHINC, are as follows: 
 

𝑯𝟎: the average values of the variable PCTBACHMOR (or MEDHHINC) are the same for 
crashes that involve drunk drivers and crashes that do not.  

vs. 
𝑯𝒂: the average values of the variable PCTBACHMOR (or MEDHHINC) are different for 
crashes that involve drunk drivers and crashes that do not. 

 



Results 

Exploratory Analyses 

In this model, we will explore the relationship between DRINKING_D, Whether the driver 

involving the car cash has drunk, and nine independent variables. As the tabulation of the 

drinking driver indicator (1 = Yes, 0 = No) attached below, 94.3% of crashes, which is made 

up by 40879 cases, did not involve drunk driving, while around 5.7% of Automobile crashes, 

or 2485 crashes, was caused by drunk drivers. 

 No Alcohol Involved Alcohol Involved 

 (DRINKING_D = 0) (DRINKING_D = 1) 

Total Number 40879 2485 

Proportion 0.9426944 0.0573056 

There are seven binary predictors in this regression, which has been listed in a cross-

tabulation below. With the p-value of the Chi-Square tests that are less than 0.001, six out of 

seven binary independent variables, except CELL_PHONE that stands for whether driver 

was using cell phone, are significantly related with the dependent variable. Thus, for these 

six predictors, we can reject the Null Hypothesis that no relationship exists between the 

predictor and dependent variable, which means they are not independent. For the 

insignificant binary predictor, CELL_PHONE, we failed to reject the Null Hypothesis, and 

there is no significant relationship between the cell phone behavior and drunk driving, 

considering that its 𝝌𝟐 p-value is 0.687 which is far larger than any significance level. 

 

No Alcohol 

Involved 
Alcohol Involved Total 

𝝌𝟐 p-value 

 

(DRINKING_D = 0) (DRINKING_D = 1)  

 

 

N % N % N % 

FATAL_OR_M: Crash 

resulted in fatality or major 

injury 

1181 2.90% 188 7.60% 1369 0.000 

OVERTURNED: Crash 

involved an overturned 

vehicle 

615 0.015 110 0.044 722 0.000 

CELL_PHONE: Driver was 

using cell phone 
426 0.01 28 0.011 454 0.687 



SPEEDING: Crash involved 

speeding car 
1261 0.031 260 0.105 1521 0.000 

AGGRESSIVE: Crash 

involved aggressive driving 
18522 0.4533 916 0.369 19438 0.000 

DRIVER1617: Crash 

involved at least one driver 

who was 16 or 17 years old 

674 0.016 12 0.005 686 0.000 

DRIVER65PLUS: Crash 

involved at least one driver 

who was at least 65 years 

old 

4237 0.104 2485 0.057 43364 0.000 

 

For continuous predictors, the independent samples t-test are applied to evaluate their 

relationships with the dependent variable, and the result of t-tests have been printed below. 

Given that both p-values of t-tests are larger than 0.05 or 0.01, we have failed to reject the 

Null Hypothesis that the population means of two different groups, No Alcohol Involved and 

Alcohol Involved, are equal. So, both PCTBACHMOR and MEDHHINC are not significantly 

correlated with the dependent variable, DRINKING_D. 

 
No Alcohol Involved Alcohol Involved 

t-test p-

value  
(DRINKING_D = 0) (DRINKING_D = 1) 

 
Mean SD Mean SD 

PCTBACHMOR: % with bachelor’s 

degree or more 
16.56986 18.21426 16.61173 18.72091 0.9137 

MEDHHINC: Median household 

income 
31483.05 16930.1 31998.75 17810.5 0.16 

 



Assumptions of Logistic Regression 

Recall that the main assumptions of logistic regression are dichotomy of the dependent 

variable, independence of observations, no severe multicollinearity, and the requirement of 

at least 50 observations per predictor. The first and third assumptions were met – our 

dataset contained a dichotomous dependent variable (DRINKING_B) and there were 43,364 

observations compared to the required 350 observations for seven predictors. 

Multicollinearity is the severe (r > 0.8 or < -0.8) correlation between predictor variables. To 

determine if there is multicollinearity between the predictors, the correlation matrix is 

presented in the figure below. 

Since there are no r values that are either greater than 0.8 or less than -0.8, it was 

determined that there was no multicollinearity between the predictor variables. However, it 

is important to remember that these Pearson’s correlation coefficients are measuring the 

strength of the linear relationship between predictors. To identify whether the predictors 
are related to each other, a Chi-square test is used, as explained above. 

The logistic regression results 

a) The Logistic regression with numeric variables 



 
The result of logistic regression with all predictors is displayed above. From the result, 

we can see that except CELL_PHONE and PCTBACHMOR, other variables (FATAL_OR_M, 

OVERTURNED, SPEEDING, AGGRESSIVE, DRIVER1617, DRIVER65PLUS, and MEDHHINC) 

are significant. The OR of FATAL_OR_M is 2.2569, which means when the crash resulted in 

fatality or major injury (and the values of other independent variables don’t change), the 

odds of accidents related to drunk driving go up by 1.1569%. The OR of OVERTURNED is 

2.25317, which means when the crash involved an overturned vehicle (and the values of 

other independent variables don’t change), the odds of accidents related to drunk driving go 

up by 115.31%. The OR of AGGRESSIVE is 0.5505, which means when the crash involved 

aggressive driving (and the values of other independent variables don’t change), the odds of 

accidents related to drunk driving go down by 44.95%. The OR of DRIVER1617 is 0.27795, 

which means when the crash involved at least one driver who was 16 or 17 years old (and 

the values of other independent variables don’t change), the odds of accidents related to 

drunk driving go down by 72.205%. The OR of DRIVER65PLUS is 0.46085, which means 

when the crash involved at least one driver who was at least 65 years old (and the values of 

other independent variables don’t change), the odds of accidents related to drunk driving go 

down by 53.915%. The OR of MEDHHINC is 1.0000028, which means when the median 

household income increase by one dollar (and the values of other independent variables 
don’t change), the odds of accidents related to drunk driving go down by 0.00028%. 

And the specificity, sensitivity and the misclassification rates for the different probability 

cut-offs are displayed as follows. In the table we can see that the cut-off value 0.5 yields the 

lowest misclassification rate 0.057, the cut-off value 0.02 yields the highest misclassification 

rate 0.889. 



 

The ROC curve is displayed above and the optimal cut-off rate, which minimizes the 

distance from the upper left corner of the ROC curve, is 0.06365151. In this cut-off value, the 

sensitivity (True Positive) is 0.66076, the specificity (True Negative) is 0.54524. In the above 

table, the aim is to look for the minimum value of mis-classification rates. Therefore, the 

optimal cut-off value which yields smallest misclassification rate is 0.5. And in the ROC curve, 

the aim is to look for the simultaneous maximum values of sensitivity and specificity. 

Therefore, the optimal cut-off value which yields simultaneously the maximum values of 

sensitivity and specificity is 0.06. 

The area under the ROC curve is 0.6398695. The prediction accuracy of the model 

depends on how well the model predicts 1 responses as 1’s and 0 responses as 0’s. Accuracy 

is measured by the area under the ROC curve. An area of 1 represents a perfect test 

(prediction); an area of 0.5 represents a worthless test (prediction). 0.6398, the area under 

the ROC Curve in this model, means that the model represents a poor test (prediction). A 

rough guide for interpreting area under ROC Curves is displayed as follows. 

• 0.90 - 1 = excellent (A)  

Cut-off Value 
Sensitivity 

(True Positive) 
Specificity 

(True Negative) 
Misclassification Rate 

0.02 0.983501006 0.058073828 0.888894013 
0.03 0.980684105 0.063926606 0.883543954 
0.05 0.734808853 0.46909171 0.51568121 
0.07 0.221327968 0.913908257 0.125864773 
0.08 0.184708249 0.938715596 0.104579836 
0.09 0.168209256 0.945962475 0.09860714 
0.1 0.164185111 0.948213019 0.09671617 

0.15 0.104225352 0.972210671 0.077529748 
0.2 0.022937626 0.995376599 0.060349599 
0.5 0.001609658 0.99990215 0.057305599 



• 0.80 - 0.90 = good (B) 
• 0.70 - 0.80 = fair (C) 
• 0.60 - 0.70 = poor (D) 
• 0.50 - 0.60 = fail (F) 

b) The Logistic regression only with binary variables 

 
The results of the logistic regression with the binary predictors only (without 

PCTBACHMOR and MEDHHINC) are displayed above. There are not any predictors which are 

significant in the new model which weren’t significant in the original one, or vice versa. From 

the result, we can see that except CELL_PHONE, other variables (FATAL_OR_M, 

OVERTURNED, SPEEDING, AGGRESSIVE, DRIVER1617, and DRIVER65PLUS) are significant. 

The AICs for both models(a & b) are the same as 18360, which means these two models have 

same prediction ability.  

Discussion 

In this study, we built a logistic model to predict accidents related to drunk driving in the 

City of Philadelphia, Pennsylvania from 2008 to 2012. Results indicate that use of a cell 

phone (CELL_PHONE) and the demographics of the crash (PCTBACHMOR and MEDHHINC) 

were not associated with drunk driving, however, when included in the logistic regression, 

we found that MEDHHINC was a significant predictor of drunk driving. Conversely, 

FATAL_OR_M, OVERTURNED, SPEEDING, AGGRESSIVE, DRIVER1617, DRIVER65PLUS, 

and MEDHHINC were significant predictors of drunk driving. We were particularly 

surprised that the use of a cell phone was not associated with drunk driving crashes. Perhaps 

we have been conditioned to associate vehicle crashes with the use of cell phones, and as 

such, we thought that there would be a relationship. However, it is possible that a drunk 
driver who causes a crash is too intoxicated to use a cell phone while driving.  



While the proportion of drunk driving to total number of crashes is small, the 

conventional logistic regression is an appropriate method when compared to the benefits of 

using Allison’s modeling rare events method because the number of drunk driving crashes 

is greater than 2000 out of over 40,000 total crashes. 


