
1) Introduction 

The purpose of this report is to predict median house values in Philadelphia at census 

block group level, with several neighborhood characteristics, including households living in 

poverty, percentage of individuals with bachelor’s degrees or higher, percentage of vacant 

houses, percentage of single house units.  

From experience, all four predictors we are using might be related to the median house 

value. First, the number of households living in poverty represents a pay level for each tract, 

which affects the level of local house prices. Also, the pay level is associated with the 

percentage of high education. In addition to that, the rate of vacant houses can reflect supply 

and demand, that says how desirable or popular houses are in the market, and tracts with 

more desirable houses usually have higher house value. At last, places with high house values 

are typically occupied by more single house units, while there are more multi-family assets 

and townhouses in the places with lower values. 

2) Methods 

a) Data Cleaning 

Philadelphia County Census block group data were obtained from the United 

States Census Bureau in the form of a shapefile and csv. Census tables for block group 

ID, median value of owner-occupied units, proportion of residents in the block group 

with at least a bachelor’s degree, proportion of vacant housing units, percentage of 

detached single family housing units, number of households living in poverty, and 

median household income were all included in the data retrieved from the Census. 

There were 1816 block group records, however block groups in which the 

population was less than 40, did not contain any housing units, or median house value 

less than $10,000 were removed from the study. Additionally, one block group in 

Northern Philadelphia was removed because it had a very high median house value 

(over $800,000) but had a very low median household income (less than $8,000).  

b) Exploratory Data Analysis 

To prepare the data for use in the OLS regression, the data were first explored 

using summary statistics and plotted the data in histograms. These summary 

statistics are useful for quickly identifying the number observations and means, 

medians, and standard deviations within those observations. Further, by plotting the 

histograms of the dependent and predictor variables, we can determine if any of 

variables do not meet the assumption of normality for the OLS regression and take 

appropriate action, such as logistically transforming those data. 



Additionally, correlation coefficients (r) were calculated to measure the strength 

of the relationship between the variables. The formula below is used to calculate r, 

where n is the number of observations, 𝑥 and 𝑦 are the mean of those variables, and 

𝑠𝑥 and 𝑠𝑦 are the standard deviations of those variables.  
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The possible values of correlation coefficients are between -1 and 1, with higher 

positive values indicating stronger positive correlation, lower negative values 

indicating negative correlation, and values around zero indicate no linear correlation. 

While non-linear relationships can have correlation coefficients, they are 

unintelligible because Pearson’s r assumes a linear relationship. 

c) Multiple Regression Analysis 

Multiple regression is a statistical technique that refers to Ordinary Least 

Squares (OLS) regression and can be used to analyze the relationship between a 

single dependent variable and several independent variables. The objective of 

multiple regression analysis is to use the independent variables whose values are 

known to predict the value of the single dependent value. Each predictor value is 

weighed, the weights denoting their relative contribution to the overall prediction, 

controlling for all other independent variables in the regression. 

 

i) The LN(MEDHVAL) is regressed on LN(NBELPOV100), PCTBACHMOR, 

PCTVACANT and PCTSINGLES, the equation for this multiple regression is as 

follows: 

LNMEDHVAL=𝛽0+𝛽1PCBACHMORE+𝛽2LNNBELPOV100+𝛽3PCTVACANT+𝛽4PCT

SINGLES+𝜀 

In this equation,  𝛽0  is the Y intercept, which is the mean value of LNMEDHVAL 

when holding all four predictors constant at zero. 𝛽1, 𝛽2, 𝛽3, 𝛽4 are coefficients of 

variables PCTBACHMOR, LNNBELPOV100, PCTVACANT, PCTSINGLES. The 

coefficient 𝛽𝑖 of each predictor is the amount by which the dependent variable 

changes as the independent variable increases by one unit (holding all other 

variables constant). 𝜀 is the residual (A random variable, which is assumed to be 

normally distributed, with 𝐸(𝜀) = 0. 

 

ii) The assumptions to use OLS regression are as follow. As for assumptions 

between the dependent variable and predictors, the mathematical relationship 

between each predictor in the equation and the dependent variable is linear. That 

says the relationship can be described as a linear function, whose graph lies on a 

straight line, and which can be described by giving the slope and y intercept. To 



validate the linearity, a scatter plot should be created to see whether the 

relationship is indeed linear.  

 

As for assumptions among predictor variables, there should not be 

multicollinearity among different independent predictors. Collinear independent 

variables are related in some fashion, although the relationship may or may not 

be casual. For example, past performance might be related to market 

capitalization, as stocks that have performed well in the past will have increasing 

market values. At the same time, every observation (i.e., every observation of 

PCTBACHMORE in different census tract) is independent and have no effect on 

other observation, which means the occurrence of one observation provides no 

information about the occurrence of the other observation.  

 

As for assumptions for residuals, they are random, independent, and normally 

distributed, with 𝐸(𝜀) = 0 and 𝑉(𝜀) = 𝜎2  . At the same time, residuals should 

have homoscedasticity, which means variance of residuals remain constant at 

any value of independent predictors.   

 

iii) In the multiple regression, parameter 𝛽0, 𝛽1,…, 𝛽𝑘, and 𝜎2 should be estimated. 

𝜎2 is the variance of residual, determining the amount of variability inherent in 

the regression model. If 𝜎2 is small, then the variance of 𝜀 is small, meaning a less 

variability. If 𝜎2  is large, then the variance of 𝜀  is large, meaning a bigger 

variability in the regression model. 

 

iv) To describe the relationship between predictors and dependent variables at a 

best way, the parameters 𝛽0, 𝛽1,…, 𝛽𝑘 in the equation should be estimated in the 

multiple regression simultaneously, using ‘Least Square Estimate’. It is expressed 

as follows. 
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‘Least Square Estimate’ is that given n observations on y, and k predictors 𝑥1… 

𝑥𝑘 , the estimates �̂�0 , �̂�1 ,…, �̂�𝑘  are chosen simultaneously to minimize the 

expression for the Error Sum of Squares (SSE).  

As for 𝜎2 , in Multiple Regression, it should be estimated as follows. k is the 

number of predictors and n is the number of observations, and MSE stands for 

mean squared error 
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v) To quantify effect of the multiple regression, 𝑅2 is introduced. It is the coefficient 

of multiple determination, or the proportion of variance in the model explained 

by all k predictors. It can be calculated as follows. 

𝑹𝟐 = 𝟏 −
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In this equation, SSE is the Error Sum of Squares and can be calculated as 

indicated in v.  SST is the Total Sum of Squares. It can be calculated as follows. 

𝑆𝑆𝑇 = ∑(𝑦𝑖 − 𝑦)2. Different from SSE, which is the sum of square of every actual 

value of the dependent variable minus corresponding predicted values, SST 

calculates the sum of square of every actual values of the dependent variables 

minus the mean value of actual values of the dependent variable. However, in 

multiple regression, due to possible collinearities among predictors, extra 

predictors will generally increase 𝑅2 . To eliminate this effect, 𝑅2 is typically 

adjusted for the number of predictors using the follow formula, where n is the 

number of observations and k is the number of predictors. In this way, we can 

obtain the adjusted R-Squared. 
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vi) Besides using 𝑅2 to describe the effect of predictors, a F-Test for all predictors 

and Hypothesis Tests(T-Test) for every predictor should be used to describe the 

effect. F-Test is the model utility test, measuring the goodness of fit for the 

regression. Its null hypothesis is that all coefficients in the model are (jointly) 

zero, which means none of the independent variable is a significant predictor. Its 

alternative hypothesis is that at least one of the coefficients is not zero. 

Null Hypothesis: 𝑯𝟎:  𝜷𝟏 = 𝜷𝟐 = ⋯ = 𝜷𝒌 = 𝟎 

Alternative Hypothesis: 𝑯𝒂:  𝜷𝟏 ≠ 𝟎 or 𝜷𝟐 ≠ 𝟎 or … or 𝜷𝒌 ≠ 𝟎 

If we can reject the null hypothesis for the alternative hypothesis, that means at 

least one predictor is significant in the regression. Then we need to do 

hypothesis tests for every predictor. For every predictor, the Null Hypothesis is 

always that the predictor i is not associated with the dependent variable. The 

Alternative Hypothesis is always that that the predictor i is associated with the 

dependent variable. 

Null Hypothesis: 𝑯𝟎:  𝜷𝒊 = 𝟎 

Alternative Hypothesis: 𝑯𝒂:  𝜷𝒊 ≠ 𝟎 

To do so, we can use p-value. The p-value is the probability of observing a value 

that is at least as different from 0 (the value stated in H0) as the given estimated 

value. If this probability is small enough (generally, p<0.05), we reject the null 

hypothesis of 𝛽𝑖 = 0 for an alternative hypothesis of 𝛽𝑖 ≠ 0.The rejection of a null 

hypothesis indicates that the independent variable is a statistically significant 

predictor of the dependent variable. If this probability is not small enough 

(generally, p>0.05), we fail to reject the null hypothesis of 𝛽𝑖 = 0, which means 

the dependent variable is not related to the independent variable. 



d) Additional Analysis  

 

i) Stepwise regression, a data mining method that selects predictors automatically 

based on several criteria, wil be applied here after the OLS regression. There are 

two main filter criteria: variables with p-value less than 0.1; models with the 

smallest value of Akaike Information Criterion.  

 

However, selecting predictors in this way is not an ideal method. First of all, the 

final model resulting from stepwise regression is not optimal in any specified 

sense. Secondly, while there may be many equally fitted models, it can only yield 

one single final model. Thirdly, this procedure does not include any researchers’ 

expertise which is indispensable when reserving significant variables that are 

not eligible in stepwise models. Fourthly,  Type I and Type II errors are still 

problems in final models, especially when many t-tests for testing βk = 0 are 

conducted, so we cannot jump to absolute conclusions of variables’ significance. 

At last, although the order in which variables are removed or added can provide 

valuable information about the quality of the predictors, we should be careful 

about over interpretation of the order. 

 

ii) To estimate the skill of the final model on new data, k-fold cross-validation in 

which k=5 will be used. K-fold cross-validation is a resampling procedure. First, 

shuffle the dataset randomly and split it into 5 groups. Then, for each unique 

group, take the group as a hold out or test data set while taking the remaining 

groups as a training data set, fit a model on the training set and evaluate it on the 

test set, and retain the evaluation score and discard the model. Lastly, summarize 

the skill of the model using the sample of model evaluation scores, which is RMSE 

in this case.  

 

RMSE is the square root of the average of squared errors across the 5 folds, which 

allows us to measure how far predicted values are from observed values in 

regression models.  

𝑹𝑴𝑺𝑬 = √
∑ (𝒚𝒊 − �̂�𝒊)𝟐𝒏

𝒊=𝟏

𝒏
= √

∑ 𝜺𝒊
𝟐𝒏

𝒊=𝟏

𝒏
 

where Σ is a fancy symbol that means “sum”, �̂�𝑖  is the predicted value for the ith 

observation in the dataset, 𝑦𝑖 is the observed value for the ith observation in the 

dataset, 𝜀𝑖 is the difference between the predicted value and observed value for 

the ith observation, n is the sample size. 



e) Software 

In this report, R will be used for all data analysis and histogram graphics, and 

ArcGIS will be used to create maps.  

 

3) Results 

a) Exploratory Results 
 

i) Summary Statistics 

 

The distributions of variables are listed below. First and foremost, the 

distributions of variables are listed below. The dependent variable, median 

house value, has a mean of 66288, and its standard deviation is 60006, which is 

relatively huge compared with its mean value. And the average number of 

households living in poverty is around 190 by census tract, while its standard 

deviation is 164. For the percent of individuals with bachelor’s degrees or higher, 

its mean value is approximately 16, with a standard deviation of above 17. The 

average percent of vacant houses is slightly higher than 11, and the standard deviation 

is 9.6. At last, the mean and standard deviation of the percent of single house units is 

around 9 and 13 respectively. 

 

Variable Mean SD 

Dependent Variable   

Median House Value 66288 60006.08 

Predictors   

# Households Living in Poverty 189.8 164.31 

% of Individuals with Bachelor’s Degrees or 

Higher 

16.08 17.77 

% of Vacant Houses 11.29 9.63 

% of Single House Unit 9.23 13.25 

 

 

 

 



 

 

ii) Histogram Distribution and Logarithmic Transformation 

 

At the same time, observations from the histograms of above variables tells us 

that none of the variables looks normal. This being the case, to meet the 

prerequisite of OLS regression that predictors should be normally distributed, 

we  examine whether a logarithmic transformation of the variable helps achieve 

a normal distribution.  

 

The dependent variable does look more or less normal after the transformation 

– hence, LNMEDHVAL will be used as the dependent variable in the regression 

analysis. Also for the predictors, the logarithmic transformation only helps 



normalize the NBELPOV100 variable (so we will use LNNBELPOV100 in the 

subsequent analyses). The other variables have a large spike at zero after the 

transformations, so we will use the original, untransformed PCBACHMORE, 

PCTVACANT, and PCTSINGLES variables in the regression.1.  

 

Other regression assumptions, such as linear relationship with the dependent 

variable, homoscedastic of residuals, and independence of observations and 

residuals will be examined in the assumption check section below. 

 

iii) Choropleth maps of the variables 

 

The Choropleth maps of the dependent variable and the predictors are visualized 

as follow. From the maps, we can tell that the choropleth of the median house 

values is similar with the choropleth of Percentage of Bachelor or higher, 

displaying a highly positive relationship between these two variables. Also, the 

choropleth of median house values is different with the choropleth of vacant 

buildings, displaying a negative relationship between these two variables. 

Besides, looking through the maps, we can find out a negative intercorrelated 

relationships between PCTBACHMOR and the LNNBELPOV100 , but whether 

there is a highly multicollinearity between these two predictors. We should look 

at the correlation matrix in the next section.  

 

 

      

 

 



iv) Correlations Matrix 

 

The Correlations Matrix is presented as follows. From this table, there is not 

severe multicollinearity among these predictors (because there are no 

correlations where r>.8 or r<.8) Besides, the correlation matrix corresponds with 

conclusions in the previous section, and also tells a moderate multicollinearity 

between the PCTBACHMOR and the LNNBELPOV100. This means we don’t need 

to remove one from these two predictors. 

b) Regression Results 

 

We regressed the median house value (LNMEDHVAL) on the % of individuals 

with a bachelor’s degree or more (PCTBACHMOR), the % of vacant dwellings in the 

census tract (PCTVACANT), the % of single family dwellings in the census tract 

(PCTSINGLES) and the number of households living below the 100% poverty level 

(LNNBELPOV100). The regression output indicates that all predictor variables 

(PCTBACHMOR, PCTVACANT, PCTSINGLES, AND LNNBELPOV100) are highly 

significant and are positively associated with median house value (p<0.0001 for all 

variables). A one-unit increase (i.e., percentage point) in the % of people with a 



bachelor's degree or more is associated with an 2.11% increase in median house 

value in a particular census tract. Similarly, a one-unit increase (1%) in the % of 

single-family dwellings in a census tract is associate with a 0.298% increase in 

median house value.  Additionally, a one-unit increase (1%) in the % of vacant 

dwellings in a census tract is associate with a 1.89% decrease in median house value. 

Finally, a one-percent increase in the number of households below the 100% poverty 

line in a census tract is associate with a 7.85% decrease in median house value.  

 

The p-value of less than 0.0001 for PCTBACHMOR indicates that if there is 

actually no relation between PCTBACHMOR and the dependent variable, MEDHVAL, 

thus indicating that if the null hypothesis that β1=0 is actually true, then the 

probability of getting a β1 coefficient estimate of 0.0209 is less than 0.0001. Similarly, 

the p-value of less than 0.0001 for PCTSINGLES indicates that if there is no actual 

relationship between PCTSINGLES and the dependent variable, MEDHVAL, (if the null 

hypothesis that β4=0 is actually true), then the probability of getting a β4 coefficient 

estimate of 0.00297 is less than 0.0001. Additionally, the p-value of less than 0.0001 

for PCTVACANT indicates that if there is no actual relationship between PCTVACANT 

and MEDHVAL, (if the null hypothesis that β3=0 is actually true), then the probability 

of getting a β3 coefficient estimate of -0.01916 is less than 0.0001. Finally, the p-value 

of less than 0.0001 for LMNBELPOV100 indicates that if there is no actual relationship 

between LMNBELPOV100 and MEDHVAL, (if the null hypothesis that β2=0 is actually 

true), then the probability of getting a β2 coefficient estimate of -0.0789 is less than 

0.0001. Therefore, because these probabilities are low, we can safely reject H0: β1 = 0 

for Ha: β1 ≠ 0, H0: β2 = 0 for Ha: β2 ≠ 0, H0: β3 = 0 for Ha: β3 ≠ 0, and H0: β4 = 0 for Ha: 

β4 ≠ 0 (at most reasonable levels of α = P(Type I error)). 

 

More than 60% of the variance in the dependent variable is explained by the 

model (R2 and Adjusted R2 are 0.6623 and 0.6615, respectively). The low p-value 

(p<0.0001) associated with the F-ratio indicates that we can reject the null 

hypothesis that all model coefficients are 0. 

 

c) Regression Assumption Checks 

 

i) In this section, the model assumptions will be tested. As we have already checked 

the variable distribution earlier in section 3(a), for variables MEDHVAL and 

BELPOV100 which have a better normal distribution after logarithmic 

transformation, the variable transformations have been made, here we directly 

looked at the scatter plots of the dependent variable and each of the predictors. 

 

ii) To examine whether the relationships between dependent variable and each of 

the predictors are linear. The scatter plots are made as follows. From the graphs, 



a linear relationship cannot be observed, which means the assumption of linear 

relationship cannot be met and there will undoubtedly result in some bias in the 

estimate of �̂�. 

 

 

iii) To examine whether the residuals are normally distributed. A histogram of the 

standardized residuals is presented as follows. From the graph, we can tell the 

Standard Residuals are close to normal distribution, meaning the assumption of 

normality of residuals is not violated. Normality is essential for all sample sizes 

to predict future values of the dependent variable (Here is the Median House 

Value).  

 



iv) To examine the homoscedasticity of residuals, a scatter plot of standardized 

residual by predicted value has been made. The reason we use standardized 

residuals is that we need to compare residuals for different observations to each 

other, standardized residuals can help us achieve comparisons. Standard 

Residuals are the raw residuals divided by the standard error of estimate. It can 

be calculated through the following formula. 

𝑒𝑖
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𝑠
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𝑛 − 2

 

From this graph, conclusions are drawn as follows. Heteroscedasticity exists in 

residuals, violating the assumption about residual homoscedasticity.  And there 

are some outliers in the graph especially in the low and high interval in predicted 

house value. However,  the model has a better prediction effect in the middle 

interval of the predicted house value, because in this interval, the standardized 

residuals are concentrated around zero with few outliers. 

 

v) We can draw conclusions about independence of observations referencing the 

maps of dependent variable and predictors in 3-a section. From those maps, 

spatial autocorrelation can be easily observed, similar observations tend to 

cluster in space. Just as Waldo Tobler (1970) said, “Everything is related to 

everything else, but near things are more related than distant things.” Median 

House Value is a variable highly related to space, for which spatial 

autocorrelation is inevitably. This makes assumption of independent observation 

invalid. And also, this spatial autocorrelation may account for the 

heteroscedasticity of standardized residuals, because they are not account in the 

multiple regression, their effect therefore exists in residuals. 

 

 

 

 



vi) The Choropleth map of the standardized regression residuals is displayed below. 

The spatial patterns of standardized residuals are noticeable. The median house 

values are underpredict in the city center, and are over predict in the north and 

west Philadelphia, which means further special operation is needed to account 

for this spatial clustering. 

 

d) Additional Models 

 

i) In the result of stepwise regression, all four predictors in the original model are 

kept in the final model, which means the original model is the best model with  

lowest AIC. Here is the output of the procedure. 

 

 

ii) The RMSE of the original model that includes all four predictors is 0.366, and the 

RMSE of the model that only includes PCTVACANT and MEDHHINC as predictors 



is 0.443. Therefore, the original four-predictor model is best, considering that the 

lower RMSE one model has, the better it is. 

4) Discussion and Limitations 

 

We used one form of Ordinary Least Squares Regression (Multiple Regression) to 

regress median household value on the four predictors: the percentage of individuals with a 

bachelor’s degree or more, the percentage of vacant houses in a census tract, the percentage 

of single-family detached homes in a census tract, and the number of households with 

incomes below the 100% poverty level. We first log-transformed the median house value 

and the number of households living the below 100% poverty line because they were not 

originally normally distributed.  

 

We found that all four predictor variables were significantly correlated with median 

household value. These findings are not particularly surprising because neighborhoods with 

people that are more educated tend to have higher salaries over their lifetime, which means 

they can live in places where homes are more expensive. Further, we would expect a lower 

number of people living below 100% poverty in neighborhoods where those households 

have higher incomes. Additionally, single-family houses tend to occupy more land area than 

townhomes, condos, or apartment dwellings, and thus would be associated with higher 

home values. Moreover, we would expect more desirable neighborhoods to have higher 

occupancy within the neighborhood (percentage of vacant dwellings).  

 

The R2 value of our model was 0.66, which means the model is able to predict 66% of 

variation within median household value across our sample tracts. The p-value of the F-ratio 

test was statistically significant (<0.001), which indicates that at least one of the predictor 

variables was significantly correlated with median house value. However, we believe that 

there are still predictors of median house value which are not accounted for in this model. 

For example, the model could account for spatial processes such as neighborhood 

characteristics or amenities such as schools, hospitals, parks, and open space. Additionally, 

internal characteristics of the houses could be accounted for by averaging the square footage, 

number of rooms, and house age across the census tract. 

 

As mentioned in the results section, the assumption of linearity between the predictors 

and dependent variables was violated. Additionally, the residuals were heteroskedastic and 

violated the assumption of homoskedasticity. Further, using the raw count of number of 

households living under the 100% poverty line could be subject to bias because it does not 

indicate the relative frequency of the households in poverty compared to the total number 

of households in a tract. For example, if one tract (tract A) has 1000 households and 5 of 

those households are under the 100% poverty line, and another tract (tract B) has 100 

households and 5 of those households are under the 100% poverty line, they will have the 



same effect in the regression model if we use the raw count value, whereas if we use the 

relative frequency, tract A is generally less impoverished than tract B. 

 


