1)Introduction

The purpose of this report is to predict median house values in Philadelphia at census
block group level, with several neighborhood characteristics, including households living in
poverty, percentage of individuals with bachelor’s degrees or higher, percentage of vacant
houses, percentage of single house units.

In a previous study, this prediction was done through use of an Ordinary Least Squares
(OLS) regression. However, OLS is often inadequate for predicting on datasets that have
spatial correlation. Therefore, in this study, we will use three methods of spatial regression:
spatial lag, spatial error, and geographically weighted (GWR) regressions. The performance
of the three spatial regressions was compared to that of the OLS Regression model.

2)Methods

a) A Description of the Concept of Spatial Autocorrelation

To understand the pros and cons of the different regression models being used, we first
need to understand the spatial processes that could be present in a dataset and how to
measure them. Recall that the First Law of Geography indicates that while all things in space
are related, things that are near are more related than distant things (Tobler, 1970). An
alternative way to describe this phenomenon is called spatial autocorrelation. Spatial
autocorrelation is the correlation of observations based on their spatial proximity. Positive
spatial autocorrelation is when similar values are clustered, whereas negative spatial
autocorrelation occurs when observations in proximity have distinct differences.

Spatial proximity can be defined in several ways such as rook neighbors (observations
that share an edge) or queen neighbors (observations that share an edge or vertex). The
spatial proximity of each observation relative to the other observations is collected in the
form of a spatial weight matrix. There are several choices for weight matrices, such as Dacey,
Cliff and Ord, and Getis and Aldstadt. While there may be compelling reasons to just use one,
statisticians often compare multiple matrices so as to ensure that the results are not an
artifact of the chosen matrix (Brusilovskiy, E. Presentation, 2021). In this study, we will use
the Queen Weight matrix.

The method we use for identifying spatial autocorrelation is Moran’s I, which is defined
below.
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In this formula, n is the number of observations, X is the mean of variable X, X; is the
value of X atlocation i, X; is the value of X at another location j, and w;; is the weight indexing



location of i relative to location j. The possible values of Moran'’s I range from -1 to 1, where
low negative values indicate strong negative spatial autocorrelation, high positive values
indicate strong positive spatial autocorrelation, and values near zero indicate no spatial
autocorrelation.

The significance test for Moran’s I works by comparing the Moran’s I of the actual
dependent variable to the distribution of Moran’s I's of the permuted dependent variable (as
a proxy for randomness), of which there will usually be 999 iterations calculated. The
Moran’s [ values are then ranked along with the true Moran’s I value, and a pseudo p-value
is calculated by dividing the rank of the true Moran’s I value by the total number of iterations
(in this case, 1000). The null hypothesis, Ho, is that there is no spatial autocorrelation
(Moran’s [ = 0), whereas the alternative hypothesis, Ha, is that there is spatial autocorrelation
(Moran’s I # 0). For instance, if the pseudo p-value is less than the stated threshold, in this
case 0.05, we can reject the null hypothesis that there is no spatial autocorrelation.

While Moran’s I can be useful in identifying if there is spatial autocorrelation in the
original dataset, it is often used to determine if a model is effective at accounting for spatial
processes by calculating the Moran’s I of the residuals. Said differently, if there is spatial
autocorrelation in the residuals, the model is likely not accounting for a predictor or
predictors.

Further, Moran's I can be applied both at the global and local levels. As described above,
the global Moran’s I indicates whether there is spatial autocorrelation that exists in the
dataset. However, it is possible to have clusters of positive and negative spatial
autocorrelation in a dataset. To identify these distinct clusters, the Moran’s [ is calculated for
each areal unit and its neighbors, as defined by the spatial weight matrix. These values are
then subjected to the same significance testing of the global Moran’s I, however each
permutation is randomized across the neighbors, not the entire dataset.

b) A Review of OLS Regression and Assumptions

Ordinary Least Squares (OLS) is a statistical method used to examine the relationship
between a variable of interest (dependent variable) and one or more explanatory variables
(predictors). OLS Regression allows us to calculate the amount by which your dependent
variable changes when a predictor variable changes by one unit (holding all other predictors
constant). OLS Regression chooses the parameters of a linear function of a set of explanatory
variables by the principle of least squares: minimizing the sum of the squares of the
differences between the observed dependent values and those values. The assumptions to
use OLS regression are as follow. The mathematical relationships between each predictor in
the equation and the dependent variable are linear. And there should not be multicollinearity
among different independent predictors. At the same time, every observation is independent
and the occurrence of one observation provides no information about the occurrence of the
other observation. As for residuals, they are random, independent, and normally distributed.



Residuals should have homoscedasticity, which means variance of residuals remain constant
at any value of independent predictors. For more information on OLS regression, please look
at HW1 Assignment.

However, when the data has a spatial component, the assumption that errors are
random/independent often doesn’t hold. This can be tested by examining the spatial
autocorrelation of the residuals using Moran’s I. Another way to test OLS residuals for spatial
autocorrelation is to regress them on nearby residuals, which are residuals at neighboring
block groups, as defined by the Queen matrix. This refers to term known as rho (p) (also
known as lambda (A) in GeoDa). In GeoDa, it is referred to as Slope b in the statistics at the
bottom of the scatterplot of OLS_RESIDU and WT_RESIDU. The formula to calculate rho (p)
is listed below.

OLS_RESIDU = o +pWT_RESIDU+¢

In GeoDa, the tool that is used to run OLS regression, also has a way of testing other
regression assumptions. The first is the assumption of homoscedasticity, which is tied to the
assumption of independence of errors. GeoDa has three different diagnostics for
heteroscedasticity: The Breusch-Pagan Test, The Koenker-Bassett Test, and The White Test.
The null hypothesis and the alternative hypothesis in these tests are list below.

Null Hypothesis: Hy: There is homoscedasticity among residuals
Alternative Hypothesis: H,: There is heteroscedasticity among residuals

Another assumption is the normality of errors. The Jarque-Bera test in GeoDa are used to
examines the normality of errors. If p<0.05, we can reject the Null Hypothesis of normality
for the alternative hypothesis of non-normality.

Null Hypothesis: Hy: The residuals are normally distributed
Alternative Hypothesis: H,: The residuals are not normally distributed

c) Spatial Lag and Spatial Error Regression

i) Spatial Lag Regression

GeoDa and R were used to run the spatial lag regression. The spatial lag regression takes
the form of an OLS regression but adds one more predictor. The concept of a spatial lag
regression is to include the lagged dependent variable (those values of the nearby

observations as defined by the weights matrix) as a predictor of the dependent variable. The
spatial lag regression was calculated with the following equation.

LNMEDHVAL = pW jymeprvas + Bo + B1 PCTBACHMOR + B, PCTVACANT

+ B3 PCTSINGLES + 8, LNNBELPOV100 + &


https://drive.google.com/file/d/19QB9AQ16MEo9FW9M7JvkWM85q3bXvwF3/view?usp=sharing

In the equation, LNMEDHVAL is the dependent variable,and PCTBACHMOR, PCTVACANT,
PCTSINGLES AND LNNBELPOV100 are independent predictors. Besides, S, is the intercept,
B1, B2, B3, B4 are coefficients of variables PCTBACHMOR, PCTVACANT, PCTSINGLES, and
LNNBELPOV100. pW; ymepuvar is the spatial lag of the dependent variable, LNMEDHVAL,
where p is the coefficient of the lagged variable, W, yyepuvar - Finally, €, is the residual.

The goal of the spatial lag regression is to consider that changes in the dependent variable
may also be a function of changes in its surrounding neighbors, which allows for better
prediction of spatial phenomena.

ii) Spatial Error Regression

GeoDa and R were used to run the spatial lag regression. The method of spatial error
regression is that we regress residuals on the nearest neighbor residuals, thereby filtering
the spatial information out of the OLS Regression residuals and decomposing the residuals €
into two parts: one with a spatial pattern AWe and one which is simply random noise u. The
part with a spatial pattern can be thought of as some variable with a spatial component
missing from the OLS regression. And the model equation for the spatial error regression is
listed below.

LNMEDHVAL = B, + B, PCTBACHMOR + B, PCTVACANT + 5 PCTSINGLES + 8, LNNBELPOV100 + AW, + U

In the equation, LNMEDHVAL is the dependent variable,and PCTBACHMOR, PCTVACANT,
PCTSINGLES AND LNNBELPOV100 are independent predictors. Besides, 5, is the intercept,
B1, B2, B3, B4 are coefficients of variables PCTBACHMOR, PCTVACANT, PCTSINGLES, and
LNNBELPOV100. W, is the spatial lag residuals. And it is the average residuals of the nearest
neighbors. 4 is the coefficient of variable spatial lag residuals. U is the random noise.

The goal of spatial error regression is to take into consideration the fact there may be
spatial dependencies in the residuals/the data.

iii) Spatial Lag and Spatial Error Regressions

The assumptions of OLS still apply to the spatial lag regression and spatial error
regression models (except that of spatial independence of observations). The mathematical
relationships between each predictor in the equation and the dependent variable are linear.
And there should not be multicollinearity among different independent predictors. As for
residuals, they should be random and normally distributed. Residuals should be
homoscedastic, which means variance of residuals remain constant at any value of
independent predictors.

In the following section, the results of spatial lag regression with OLS and the results of
spatial error regressions with OLS will be compared and will decide whether the spatial
models perform better than OLS based several criteria. These criteria include Akaike
Information Criterion (AIC)/Schwarz Criterion (SC); Log Likelihood; and Likelihood Ratio



Test. AIC and SC are measures of the goodness of fit of an estimated statistical model. They
are relative measures of the information that is lost when a given model is used to describe
reality and can be said to describe the tradeoff between precision and complexity of the
model. In GeoDa, the lower the AIC and SC, the better the fit. Log Likelihood is associated
with the maximum likelihood method of fitting a statistical model to the data and estimating
model parameters. Maximum likelihood picks the values of the model parameters that make
the data "more likely" than any other values of the parameters would make them. The higher
the log likelihood, the better the model fit. Likelihood ratio test is used to compares the OLS
model with the spatial models. The likelihood-ratio test tests whether this ratio is
significantly different from one, assessing the goodness of fit of two competing statistical
models based on the ratio of their likelihoods. If the p value is significant important, then the
spatial model is better than the OLS Regression model.

Null Hypothesis: Hy: OLS Model is better than Spatial Model
Alternative Hypothesis: H,: Spatial Model is better than OLS Model.

Besides, since spatial models are introduced to account for spatial autocorrelation, there
is another way of comparing OLS results with spatial lag and spatial error results. That is by
looking at the Moran’s I of regression residuals. A model with a Moran’s I, which is close to
zero is better, because that means the spatial autocorrelation has been account for.

d) Geographically Weighted Regression

Unfortunately, the Spatial Lag Regression and Spatial Error Regression introduced above,
global regressions, cannot perform well on spatial non-stationarity with Simpson's paradox.
Simpson's paradox is an effect that occurs when the marginal association between two
categorical variables is qualitatively different from the partial association between the same
two variables after controlling for one or more other variables. However, separate local
regressions for each location can help to eliminate this kind of bias. Local regression is a form
of regression analysis in which a model of the relationship between outcomes and predictors
is obtained by fitting different functions to different segments or intervals of data. Here, we
will use Geographically Weighted Regression, one of those local regression methods, in
ArcGIS Pro.

GWR is one of those local regression methods that run the regression for every
observation (location i) on other observations, and observations close to location i are given
greater weights. The equation for the GWR model is written for each observation i:

Yi = Bio + BuXin + BizXiz + -+ BimXim + & = Bio + Z Bik Xir + &
k=1
y; is the expected value of dependent variable y of observationi, x;; are k predictor values
around the location of observation i, B is the expected change in y; associated with a 1-unit
increase in the value of x;;, (holding all other variables constant), ¢; is the residual of
observation i, a random variable, which is assumed to be normally distributed, with E(&)=0.



There are two primary ways to weigh nearby locations for each observation - fixed
bandwidth and adaptive bandwidth. The number of observations around each point i will
vary for the fixed bandwidth, while the bandwidth distance h (and the area) is not.
Conversely, for the adaptive bandwidth, the number of observations will stay unchanged,
but the distance h will fluctuate. An adaptive bandwidth kernel (weighing function) is
appropriate for this case because distribution varies with heterogeneously shaped and sized
polygons across space. Given this spatial characteristic, we will apply adaptive bandwidth
for later GWR regression.

The assumptions that are needed for OLS are still needed for spatial error regression
models (except that of spatial independence of observations). The mathematical
relationships between each predictor in the equation and the dependent variable are linear.
And there should not be multicollinearity among different independent predictors. As for
residuals, they are random and normally distributed. Residuals should have
homoscedasticity, which means variance of residuals remain constant at any value of
independent predictors. In addition, GWR models require at least 300 observations. For
multicollinearity violation in local regressions, several variables will have similar patterns
of clusters in a certain region, which can be told from the condition number in the attribute
table. If the condition number is larger than 30, equal to Null, or equal to
1.7976931348623158e + 308, the regression results are unreliable due to local
multicollinearity.

To test whether the parameter estimates are significantly different from zero, the ratio of
the beta coefficients and the standard error estimates for each location will be applied
instead of p-values. Because local regressions estimate models for each location and each
location need to do several significance tests, which will lead to a tremendous amount of
significance tests followed by many tests that return a significant result simply by chance
(i.e., type I error). Although there are ways to adjust for this multiple testing problem, those
ways are not currently implemented in ArcGIS Pro.

3)Results

a) Spatial Autocorrelation

The Moran’s I of 0.794 indicates that there is significant (p=0.001) spatial autocorrelation
in the dependent variable, LNMEDHVAL. Figure 1 is a histogram comparison of the global
Moran’s [ of LNMEDHVAL and the random permutations.
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To further explain this relationship, Figure 2 illustrates the relationship between
LNMEDHVAL and its spatial lags. If there were no spatial autocorrelation in the dataset, we
would expect to see a horizontal line and a cluster of data around the origin of the graph.
However, this is not the case, and there is a clear positive relationship between the
LNMEDHVAL and its spatial lags.
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Figure 3 illustrates the distribution of significant areas of spatial autocorrelation within
the dependent variable. All colored block groups have significant spatial autocorrelation, all
greyed block groups do not. The values are mapped by the value of LNMEDHVAL-significance
level of spatial autocorrelation. For instance, the pink values refer to areas which have high
house values, and lower significant spatial autocorrelation.
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The clustering of high value homes in areas on the border of the urban and suburban parts
of the city. These are areas which have been traditionally segregated and populated by white
people. Conversely, the clustering of low value homes tends to center around denser and
more urbanized parts of the city which have been traditionally segregated and populated by
people of color.



b) A Review of OLS Regression and Assumptions

The OLS output from GeoDa and R are present as follows. From Table 1, we can see that
the regression outputs indicate that all predictor variables (PCTBACHMOR, PCTVACANT,
PCTSINGLES, AND LNNBELPOV100) are highly significant (p<0.0001 for all variables). And
more than 60% of the variance in the dependent variable is explained by the model (R2 and
Adjusted R2 are 0.6929 and 0.6922 in R and 0.6623 and 0.6615 in GeoDa, respectively). The
low p-value (p<0.0001) associated with the F-ratio indicates that we can reject the null
hypothesis that all model coefficients are 0.
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From the diagnostics in GeoDa, we can see the results for heteroscedasticity of The
Breusch-Pagan Test, The Koenker-Bassett Test, and The White Test. All these three tests are
consistent with each other and indicate a problem with heteroscedasticity.

Also, the Jarque-Bera test in GeoDa examines the Null Hypothesis that the residuals are
from a normal distribution. From table 1, we can see that p value of the Jarque-Bera test is
significant important indicating that we can reject the Null Hypothesis of normality for the
alternative hypothesis of non-normality.

To examine the spatial autocorrelation of this OLS Regression, the scatterplot of
OLS_RESIDU by WT_RESIDU are presented in the following. (The right one is the graph from
GeoDa and the other one is from R) We can see from the picture that the value of p (referred
to as Slope b in the results) is 0.733 and it is significant important. That indicates a significant
spatial autocorrelation in the OLS Regression model.

To further examine spatial autocorrelation, the Moran’s I scatterplot and results from the
999 permutations for OLS regression residuals are plotted as follows. From the graphs, we
can see a significant spatial autocorrelation in this OLS residuals. It is problematic and we
will attempt to account for that in the following practices in spatial model regressions.
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c) Spatial Lag and Spatial Error Regression
i) Spatial Lag Regression

The spatial lag regression output from GeoDa and R is presented below. From Table 2, we
can tell that the coefficient of the spatial lag, p is 0.62, and it is significantly significant (p <
0.0001). This indicates that the unexplained variation in median house values is highly
(positively) correlated. Further, we can see that all predictor variables (PCTBACHMOR,
PCTVACANT, PCTSINGLES, AND LNNBELPOV100) are statistically significant (p<0.0001 for
all variables). However, compared to the OLS AIC (1271.8), the spatial lag regression is
neither better nor worse (AIC = 1271.8).
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The Breusch-Pagan test, as observed in the GeoDa results summary, indicates that there
is an issue with heteroscedastic residuals (p < 0.0001). All these three tests are consistent
with each other and indicate a problem with heteroscedasticity.
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To determine if there is spatial autocorrelation in the residuals of the spatial lag
regression, the Global Moran’s I histogram was created. The red line indicates the location of
the actual Global Moran’s I from the spatial lag model, and the gray bars indicate the
permutations. Further, to examine for the occurrence of local spatial autocorrelation, the
scatterplot of LAG_RESIDU by spatially lagged LAG_RESIDU are presented in the following.



We can see from the picture that the residuals of the spatial lag regression tend to be much
less spatially autocorrelated than the OLS residuals.
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Overall, while the spatial lag is does not deviate from OLS regression regarding the Akaike
Information Criterion, it performs much better at accounting for the spatial processes that
exist within the data, as there is much less spatial autocorrelation in the residuals.

ii) Spatial Error Regression

The Spatial Error Regression output from GeoDa and R are present as follows. From Table
3, we can tell that the coefficient of the spatial parameter A is 0.81, and it is significantly
important. This shows that the unexplained variation in median house values is highly
(positively) correlated.
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After introducing the spatial parameter A, we can see that the remaining terms
(LNNBELPOV, PCTBACHMOR, PCTSINGLES, and PCTVACANT) all are still significant, even
some coefficients of predictors change when comparing to the result in OLS Regression.
However, based on the Breusch-Pagan test result in the GeoDa, which is still significantly
important, the spatial lag regression residuals are still heteroscedastic.

We can compare the Spatial Error regression and OLS regression based on the Akaike
Information Criterion/Schwarz Criterion, the Log Likelihood, and the Likelihood Ratio Test,
to see whether spatial error regression has improved the model. In the Akaike Information
Criterion/Schwarz Criterion, the value of the spatial error model is nearly half of the OLS
Regression, indicating that the spatial error model is way better. For the Log Likelihood, the
spatial error model is also nearly half of the OLS Regression, validating that the spatial error
model is way better. For the Likelihood Ratio Test, the p value is significant important, so the
spatial model is better than the OLS Regression model.
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To determine if there is spatial autocorrelation in the residuals of the spatial lag
regression, the Global Moran’s I histogram was created. The red line indicates the location of
the actual Global Moran’s I from the spatial error model, and the gray bars indicate the
permutations.



The Local Moran'’s [ scatterplots of spatial error regression residuals and OLS regression
residuals are plotted respectively in the following left and in the following right. From the
scatter plots, we can see the value of Moran’s I for spatial error model is less than the value
of the OLS model and is closer to 0. That means there seem to be less spatial autocorrelation
in these residuals than in OLS residuals.
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Overall, based on the Akaike Information Criterion/Schwarz Criterion, the Log Likelihood,
the Likelihood Ratio Test, and the Moran’s I scatterplots, we can confidently say the spatial
error regression model is doing better than the OLS regression model.

Then which model is better, the Spatial Lag Regression model or the Spatial Error
Regression model? Since the models are not nested (i.e., neither method is a special subtype
of each other), the likelihood-ratio test cannot be used for this comparison. However, it is OK
to compare the two non-nested models based on Akaike Information Criterion and the
Schwarz Information Criterion. From the regression results that are listed above, we can see
that the value of the Akaike Information Criterion for Spatial Lag Regression model is 523.48,
and the value for Spatial Error Regression model is 755.381. That says, the Spatial Lag
Regression model is doing better than the Special Error Regression model. When it comes to
the Schwarz criterion, the value for Spatial Error Regression model is 782.631, and the value
for Spatial Lag Regression model is 556.18, also indicating the Spatial Lag Regression model
is better.

d) Geographically Weighted Regression

Given that the overall R-squared of the GWR regression is 0.85 (both in R and ArcGIS)
while the R-squared of the OLS regression is only 0.66, the GWR regression appears to
explain more variance than the OLS one in the dependent variable. In addition, the Akaike
Information Criteria of GWR is 269 in R (ArcGIS doesn’t provide AIC), which is comparatively
lower than the AIC of OLS (1433), Spatial Lag (470), and Spatial Error (731) models.
Considering that the lower the AIC is the better the model is fitted, the GWR model does the
best job here. The regression summary for GWR in the R and the supplementary table of it
on ArcGIS are shown below.

p :
gueight~ gwr Gauss,
se.fit=
hatmatrix = TRUE)

call:
gwr (formula = LNMEDHVAL ~ PCTBACHMOR + PCTVACANT + PCTSINGLES +

LNNBELPOV100, data = shpoGR, gweight = gwr.Gauss, adapt = bw,

hatmatrix = TRUE, se.fit = TRUE)
Kernel function: gwr.Gauss
Adaptive quantile: 0.008384969 (about 14 of 1720 data points)
summary of GwR coefficient estimates at data points:

i Median 3rd qQu. Max. Global

X.Intercept. 2.36430113 7.61090960 8.78740849 9.92363801 13.43025029 7.1182
PCTBACHMOR  -0.00080844 0.00926402 0.01388490 0.01929472 0.03118089 0.0187

PCTVACANT  -0.03817152 -0.01307831 -0.00787049 -0.00257150 0.01607613 -0.0145
PCTSINGLES  -0.02571878 -0.00603878 0.00011933 0.00475458 0.01441872 0.0026
LNNBELPOV10O -0.26527877 0.06190542 0.18285804 0.30323977 0.83764043 0.3518
Number of data points: 1720

effective number of parameters (residual: 2traces - traces’s): 351 8195
effective degrees of freedom (residual: 2traces - traces's): 13|

sigma (residual: 2traces - traces’s): 0.2727216

effective number of parameters (model: traces): 251.0706

effective degrees of freedom (model: traces): 1468.929

sigma (model: traces): 0.263203

sigma (ML): 0.2432355

AICC (GWR p. 61, eq 2.33; p. 96, eq. 4.21): 609.0487

AIC (GWR p. 96, eq. 4.22): 269.0051

Residual sum of squares: 101.7613

qQuasi-global R2: 0.8508032

The global Moran’s I value of GWR residuals are 0.029 and 0.021, respectively in R and
ArcGIS, which are closer to than global Moran’s I of these residuals in OLS , Spatial Lag and
Spatial Error regressions. Thus, there’s less spatial autocorrelation in residuals of the GWR



regression, indicating GWR has estimated more spatial relations for this data. Here are
Moran’s | results, both the Moran scatterplot and the significance test both from R and

GeoDa.
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Now, explore local regression results, a screenshot of the attribute table and maps of the
ratio of the beta coefficients and the standard error estimates, and take the observation at
the first row as an example. For the first observation, 36.58% of variance are explained in
LNMEDHVAL with a Local R-squared of 0.3658. For coefficients, when PCTVACANT,
PCTBACHM, LNNBELPOV100 and PCTSINGLES are all 0, PREDICTED LNMEDHVAL =
INTRCPT = 10.29. As PCTBACHM increases by 1 unit (1%), LNMEDHV AL increases by
(e%948 — 1) x 100%; as PCTVACANT increases by 1 unit (1%), LNMEDHVAL decreases by
(€299 — 1) x 100%; as PCTSINGLES increases by 1 unit (1%), LNMEDHVAL increases by
(%% — 1) x 100%; as LNNBELPOV100 increases by 1% , LNMEDHVAL decreases by
(1.01°979 — 1) x 100%. At last, Condition number 564.61 > 30, so it performs poorly in terms
of multicollinearity. And most of the condition numbers in this regression are larger than 30,
indicating that the assumption of local multicollinearity is violated in most places.

WTRCPT lse .mcn] ©_poTBACHM < [sE MuAcnlc N:wAcAu[s; »cmc.lc vcvs-»mlsz msmlc wmm[ss mua(wlpnmmml RESDUAL [ sToRESID [.«nusnczlcooxs olm ~uum| LOCAI.H?I

GeoDa

To evaluate how local regressions have been fitted, map the local R-squared values for
GWR. As the choropleth map attached below, the GWR model fits poorly in the central section
of Philadelphia and west Philadelphia with low local R-squared values, while most parts of
Philadelphia are well fitted, especially the area of Mt. Airy and its surrounding neighborhood.

GWR _output

Local R-Squared
0.068142 - 0.348679
0.348680 - 0.508525

I 0.508526 - 0.637400
I 0637401 - 0.762560
I 0762561 - 0.902188

A 0 15 3 6 Mies




Then, test the local significance of the intercept and four predictors. Below are maps of
the ratio of the beta coefficients and their standard error estimates, where the breaks and
color schemes are as follow:

e Dark Blue: Coef/SE <= -2, A negative relationship with the dependent variable
that’s possibly significant

e LightBlue: - 2 < Coef/SE <= 0: A negative relationship with the dependent variable
that’s likely not significant

e Pink: 0 < Coef/SE < 2: A positive relationship with the dependent variable that’s
likely not significant

e Dark Red: Coef/SE >= 2: A positive relationship with the dependent variable that’s
possibly significant

According to this criteria, all intercept values are significant and have positive
relationships with LNMEDHVAL, and most PCTBACHM values have positive relationships
with LNMEDHVAL but only half of them are significant. For PCTVACANT, LNNBELPOV100
and PCTSINGLES values, there are both positive and negative relationships with

GeoDa




LNMEDHVAL among different locations in Philadelphia, and only coefficient values of some
locations are significantly different from O.
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4)Discussion

In this study, we utilized R, GeoDa, and ArcGIS Pro to compare OLS, Spatial Lag, Spatial
Error, and Geographically Weighted regressions to build models which predict the median
house value for census tracts in Philadelphia. We utilized several diagnostic methods for
comparing the models such as Global Moran’s I, Local Moran’s I, the Akaike Information
Criterion (AIC), the log-likelihood, and the likelihood ratio.

Based on our results, GWR is the most effective method as it accounts for most of the
spatial autocorrelation that exists in the original dataset. The Global Moran’s I for the GWR
is 0.02. Additionally, the AIC for the GWR is the lowest value (269) which indicates a well fit
model. The spatial lag regression is the next most effective model with a Global Moran’s I of
-0.08, indicating slight negative spatial autocorrelation, and an AIC of 523 (values differ
based on software used). The spatial error regression is the next most effective model with
a Global Moran’s I of -0.094 and an AIC of 755.38. Finally, the OLS regression is the least
effective with a Global Moran’s I of 0.312 and an AIC of 1432.



In the various models, we observed similar distributions of significant local spatial
autocorrelation in the residuals. The spatial models (GWR, spatial lag, and spatial error)
performed poorly for block groups that were on the extremes of the median house values.
For instance, there was statistically significant spatial autocorrelation in the residuals of the
GWR model in block groups in Northwest and Center City, Philadelphia, areas which
traditionally have relatively high and low median house values, respectively. The
observations made about the GWR model are also true for the spatial lag model and spatial
error model. Finally, when comparing the spatial autocorrelation in the residuals, it is
apparent that the OLS model is unable to account for spatial autocorrelation in Northeast
Philadelphia, an area that was accounted for by the other models.

Regarding limitations of the model, the Jarque-Bera test validating the assumption of
normal residuals, is not met in the OLS Regression model. Additionally, the assumption of
homoscedasticity was violated for all models per the Breush-Pagan Test for
heteroscedasticity (all were statistically significant, p < 0.0001). Finally, even the GWR model
which performed the best, did not fully account for all of the spatial autocorrelation as is
evident by the Local Moran’s I for the residuals.



