
1) Introduction  

The purpose of this report is to predict median house values in Philadelphia at census 

block group level, with several neighborhood characteristics, including households living in 

poverty, percentage of individuals with bachelor’s degrees or higher, percentage of vacant 

houses, percentage of single house units.  

In a previous study, this prediction was done through use of an Ordinary Least Squares 

(OLS) regression. However, OLS is often inadequate for predicting on datasets that have 

spatial correlation. Therefore, in this study, we will use three methods of spatial regression: 

spatial lag, spatial error, and geographically weighted (GWR) regressions. The performance 
of the three spatial regressions was compared to that of the OLS Regression model.  

 

2) Methods 

a) A Description of the Concept of Spatial Autocorrelation 

To understand the pros and cons of the different regression models being used, we first 

need to understand the spatial processes that could be present in a dataset and how to 

measure them. Recall that the First Law of Geography indicates that while all things in space 

are related, things that are near are more related than distant things (Tobler, 1970). An 

alternative way to describe this phenomenon is called spatial autocorrelation. Spatial 

autocorrelation is the correlation of observations based on their spatial proximity. Positive 

spatial autocorrelation is when similar values are clustered, whereas negative spatial 

autocorrelation occurs when observations in proximity have distinct differences. 

Spatial proximity can be defined in several ways such as rook neighbors (observations 

that share an edge) or queen neighbors (observations that share an edge or vertex). The 

spatial proximity of each observation relative to the other observations is collected in the 

form of a spatial weight matrix. There are several choices for weight matrices, such as Dacey, 

Cliff and Ord, and Getis and Aldstadt. While there may be compelling reasons to just use one, 

statisticians often compare multiple matrices so as to ensure that the results are not an 

artifact of the chosen matrix (Brusilovskiy, E. Presentation, 2021). In this study, we will use 

the Queen Weight matrix.  

The method we use for identifying spatial autocorrelation is Moran’s I, which is defined 
below. 
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In this formula, n is the number of observations, 𝑋̅ is the mean of variable X, 𝑋𝑖  is the 

value of X at location i, 𝑋𝑗 is the value of X at another location j, and 𝑤𝑖𝑗 is the weight indexing 



location of i relative to location j. The possible values of Moran’s I range from -1 to 1, where 

low negative values indicate strong negative spatial autocorrelation, high positive values 

indicate strong positive spatial autocorrelation, and values near zero indicate no spatial 

autocorrelation.  

The significance test for Moran’s I works by comparing the Moran’s I of the actual 

dependent variable to the distribution of Moran’s I’s of the permuted dependent variable (as 

a proxy for randomness), of which there will usually be 999 iterations calculated. The 

Moran’s I values are then ranked along with the true Moran’s I value, and a pseudo p-value 

is calculated by dividing the rank of the true Moran’s I value by the total number of iterations 

(in this case, 1000). The null hypothesis, H0, is that there is no spatial autocorrelation 

(Moran’s I = 0), whereas the alternative hypothesis, Ha, is that there is spatial autocorrelation 

(Moran’s I ≠ 0). For instance, if the pseudo p-value is less than the stated threshold, in this 

case 0.05, we can reject the null hypothesis that there is no spatial autocorrelation. 

While Moran’s I can be useful in identifying if there is spatial autocorrelation in the 

original dataset, it is often used to determine if a model is effective at accounting for spatial 

processes by calculating the Moran’s I of the residuals. Said differently, if there is spatial 

autocorrelation in the residuals, the model is likely not accounting for a predictor or 
predictors.  

Further, Moran’s I can be applied both at the global and local levels. As described above, 

the global Moran’s I indicates whether there is spatial autocorrelation that exists in the 

dataset. However, it is possible to have clusters of positive and negative spatial 

autocorrelation in a dataset. To identify these distinct clusters, the Moran’s I is calculated for 

each areal unit and its neighbors, as defined by the spatial weight matrix. These values are 

then subjected to the same significance testing of the global Moran’s I, however each 
permutation is randomized across the neighbors, not the entire dataset.  

 

b) A Review of OLS Regression and Assumptions 

Ordinary Least Squares (OLS) is a statistical method used to examine the relationship 

between a variable of interest (dependent variable) and one or more explanatory variables 

(predictors). OLS Regression allows us to calculate the amount by which your dependent 

variable changes when a predictor variable changes by one unit (holding all other predictors 

constant). OLS Regression chooses the parameters of a linear function of a set of explanatory 

variables by the principle of least squares: minimizing the sum of the squares of the 

differences between the observed dependent values and those values. The assumptions to 

use OLS regression are as follow. The mathematical relationships between each predictor in 

the equation and the dependent variable are linear. And there should not be multicollinearity 

among different independent predictors. At the same time, every observation is independent 

and the occurrence of one observation provides no information about the occurrence of the 

other observation. As for residuals, they are random, independent, and normally distributed. 



Residuals should have homoscedasticity, which means variance of residuals remain constant 

at any value of independent predictors. For more information on OLS regression, please look 
at HW1 Assignment. 

However, when the data has a spatial component, the assumption that errors are 

random/independent often doesn’t hold. This can be tested by examining the spatial 

autocorrelation of the residuals using Moran’s I. Another way to test OLS residuals for spatial 

autocorrelation is to regress them on nearby residuals, which are residuals at neighboring 

block groups, as defined by the Queen matrix. This refers to term known as rho (ρ) (also 

known as lambda (λ) in GeoDa). In GeoDa, it is referred to as Slope b in the statistics at the 

bottom of the scatterplot of OLS_RESIDU and WT_RESIDU. The formula to calculate rho (ρ) 

is listed below. 

OLS_RESIDU =𝜷𝟎+ρWT_RESIDU+𝜺 

 
In GeoDa, the tool that is used to run OLS regression, also has a way of testing other 

regression assumptions. The first is the assumption of homoscedasticity, which is tied to the 

assumption of independence of errors. GeoDa has three different diagnostics for 

heteroscedasticity: The Breusch-Pagan Test, The Koenker-Bassett Test, and The White Test. 

The null hypothesis and the alternative hypothesis in these tests are list below. 

Null Hypothesis: 𝑯𝟎:  𝑻𝒉𝒆𝒓𝒆 𝒊𝒔 𝒉𝒐𝒎𝒐𝒔𝒄𝒆𝒅𝒂𝒔𝒕𝒊𝒄𝒊𝒕𝒚 𝒂𝒎𝒐𝒏𝒈 𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒔 

Alternative Hypothesis: 𝑯𝒂: 𝑻𝒉𝒆𝒓𝒆 𝒊𝒔 𝒉𝒆𝒕𝒆𝒓𝒐𝒔𝒄𝒆𝒅𝒂𝒔𝒕𝒊𝒄𝒊𝒕𝒚 𝒂𝒎𝒐𝒏𝒈 𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒔 

 

Another assumption is the normality of errors. The Jarque-Bera test in GeoDa are used to 

examines the normality of errors. If p<0.05, we can reject the Null Hypothesis of normality 

for the alternative hypothesis of non-normality. 

 
Null Hypothesis: 𝑯𝟎:  𝑻𝒉𝒆 𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒔 𝒂𝒓𝒆 𝒏𝒐𝒓𝒎𝒂𝒍𝒍𝒚 𝒅𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒆𝒅 

Alternative Hypothesis: 𝑯𝒂: 𝑻𝒉𝒆 𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒔 𝒂𝒓𝒆 𝒏𝒐𝒕 𝒏𝒐𝒓𝒎𝒂𝒍𝒍𝒚 𝒅𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒆𝒅 

 

c) Spatial Lag and Spatial Error Regression 

i) Spatial Lag Regression 

GeoDa and R were used to run the spatial lag regression. The spatial lag regression takes 

the form of an OLS regression but adds one more predictor. The concept of a spatial lag 

regression is to include the lagged dependent variable (those values of the nearby 

observations as defined by the weights matrix) as a predictor of the dependent variable. The 
spatial lag regression was calculated with the following equation. 

LNMEDHVAL = 𝝆𝑾𝑳𝑵𝑴𝑬𝑫𝑯𝑽𝑨𝑳 + 𝜷𝟎 + 𝜷𝟏 PCTBACHMOR + 𝜷𝟐 PCTVACANT 

 + 𝜷𝟑 PCTSINGLES + 𝜷𝟒 LNNBELPOV100 + 𝜺 

 

https://drive.google.com/file/d/19QB9AQ16MEo9FW9M7JvkWM85q3bXvwF3/view?usp=sharing


In the equation, LNMEDHVAL is the dependent variable, and PCTBACHMOR, PCTVACANT, 

PCTSINGLES AND LNNBELPOV100 are independent predictors. Besides, 𝛽0 is the intercept, 

𝛽1 , 𝛽2 , 𝛽3, 𝛽4  are coefficients of variables PCTBACHMOR, PCTVACANT, PCTSINGLES, and 

LNNBELPOV100. 𝜌𝑊𝐿𝑁𝑀𝐸𝐷𝐻𝑉𝐴𝐿  is the spatial lag of the dependent variable, LNMEDHVAL, 
where 𝜌 is the coefficient of the lagged variable, 𝑊𝐿𝑁𝑀𝐸𝐷𝐻𝑉𝐴𝐿 . Finally, 𝜀 , is the residual. 

The goal of the spatial lag regression is to consider that changes in the dependent variable 

may also be a function of changes in its surrounding neighbors, which allows for better 
prediction of spatial phenomena. 

ii) Spatial Error Regression 

GeoDa and R were used to run the spatial lag regression. The method of spatial error 

regression is that we regress residuals on the nearest neighbor residuals, thereby filtering 

the spatial information out of the OLS Regression residuals and decomposing the residuals ε 

into two parts: one with a spatial pattern λWε and one which is simply random noise u. The 

part with a spatial pattern can be thought of as some variable with a spatial component 

missing from the OLS regression. And the model equation for the spatial error regression is 

listed below. 

LNMEDHVAL = 𝜷𝟎 + 𝜷𝟏 PCTBACHMOR + 𝜷𝟐 PCTVACANT + 𝜷𝟑 PCTSINGLES + 𝜷𝟒 LNNBELPOV100 + 𝝀𝑾𝜺 + 𝓤 

 
In the equation, LNMEDHVAL is the dependent variable, and PCTBACHMOR, PCTVACANT, 

PCTSINGLES AND LNNBELPOV100 are independent predictors. Besides, 𝛽0 is the intercept, 

𝛽1 , 𝛽2 , 𝛽3, 𝛽4  are coefficients of variables PCTBACHMOR, PCTVACANT, PCTSINGLES, and 

LNNBELPOV100. 𝑊𝜀 is the spatial lag residuals. And it is the average residuals of the nearest 

neighbors. 𝜆 is the coefficient of variable spatial lag residuals. 𝒰 is the random noise. 

The goal of spatial error regression is to take into consideration the fact there may be 

spatial dependencies in the residuals/the data. 

 
iii) Spatial Lag and Spatial Error Regressions 

The assumptions of OLS still apply to the spatial lag regression and spatial error 

regression models (except that of spatial independence of observations). The mathematical 

relationships between each predictor in the equation and the dependent variable are linear. 

And there should not be multicollinearity among different independent predictors. As for 

residuals, they should be random and normally distributed. Residuals should be 

homoscedastic, which means variance of residuals remain constant at any value of 
independent predictors. 

In the following section, the results of spatial lag regression with OLS and the results of 

spatial error regressions with OLS will be compared and will decide whether the spatial 

models perform better than OLS based several criteria. These criteria include Akaike 

Information Criterion (AIC)/Schwarz Criterion (SC); Log Likelihood; and Likelihood Ratio 



Test. AIC and SC are measures of the goodness of fit of an estimated statistical model. They 

are relative measures of the information that is lost when a given model is used to describe 

reality and can be said to describe the tradeoff between precision and complexity of the 

model. In GeoDa, the lower the AIC and SC, the better the fit. Log Likelihood is associated 

with the maximum likelihood method of fitting a statistical model to the data and estimating 

model parameters. Maximum likelihood picks the values of the model parameters that make 

the data "more likely" than any other values of the parameters would make them. The higher 

the log likelihood, the better the model fit. Likelihood ratio test is used to compares the OLS 

model with the spatial models. The likelihood-ratio test tests whether this ratio is 

significantly different from one, assessing the goodness of fit of two competing statistical 

models based on the ratio of their likelihoods. If the p value is significant important, then the 

spatial model is better than the OLS Regression model. 

Null Hypothesis: 𝑯𝟎:  𝑶𝑳𝑺 𝑴𝒐𝒅𝒆𝒍 𝒊𝒔 𝒃𝒆𝒕𝒕𝒆𝒓 𝒕𝒉𝒂𝒏 𝑺𝒑𝒂𝒕𝒊𝒂𝒍 𝑴𝒐𝒅𝒆𝒍 

Alternative Hypothesis: 𝑯𝒂: 𝑺𝒑𝒂𝒕𝒊𝒂𝒍 𝑴𝒐𝒅𝒆𝒍 𝒊𝒔 𝒃𝒆𝒕𝒕𝒆𝒓 𝒕𝒉𝒂𝒏 𝑶𝑳𝑺 𝑴𝒐𝒅𝒆𝒍. 

 
Besides, since spatial models are introduced to account for spatial autocorrelation, there 

is another way of comparing OLS results with spatial lag and spatial error results. That is by 

looking at the Moran’s I of regression residuals. A model with a Moran’s I, which is close to 
zero is better, because that means the spatial autocorrelation has been account for. 

d) Geographically Weighted Regression 

Unfortunately, the Spatial Lag Regression and Spatial Error Regression introduced above, 

global regressions, cannot perform well on spatial non-stationarity with Simpson's paradox. 

Simpson's paradox is an effect that occurs when the marginal association between two 

categorical variables is qualitatively different from the partial association between the same 

two variables after controlling for one or more other variables. However, separate local 

regressions for each location can help to eliminate this kind of bias. Local regression is a form 

of regression analysis in which a model of the relationship between outcomes and predictors 

is obtained by fitting different functions to different segments or intervals of data. Here, we 

will use Geographically Weighted Regression, one of those local regression methods, in 

ArcGIS Pro.  

GWR is one of those local regression methods that run the regression for every 

observation (location i) on other observations, and observations close to location i are given 
greater weights. The equation for the GWR model is written for each observation 𝑖:  

𝒚𝒊 = 𝜷𝒊𝟎 + 𝜷𝒊𝟏𝒙𝒊𝟏 + 𝜷𝒊𝟐𝒙𝒊𝟐 + ⋯ + 𝜷𝒊𝒎𝒙𝒊𝒎 + 𝜺𝒊 = 𝜷𝒊𝟎 + ∑ 𝜷𝒊𝒌

𝒎

𝒌=𝟏

𝒙𝒊𝒌 + 𝜺𝒊  

𝑦𝑖 is the expected value of dependent variable y of observation𝑖, 𝑥𝑖𝑘 are 𝑘 predictor values 

around the location of observation 𝑖, 𝛽𝑖𝑘 is the expected change in 𝑦𝑖 associated with a 1-unit 

increase in the value of 𝑥𝑖𝑘  (holding all other variables constant), 𝜀𝑖  is the residual of 
observation 𝑖, a random variable, which is assumed to be normally distributed, with E(𝜀)=0.  



There are two primary ways to weigh nearby locations for each observation - fixed 

bandwidth and adaptive bandwidth. The number of observations around each point i will 

vary for the fixed bandwidth, while the bandwidth distance h (and the area) is not. 

Conversely, for the adaptive bandwidth, the number of observations will stay unchanged, 

but the distance h will fluctuate. An adaptive bandwidth kernel (weighing function) is 

appropriate for this case because distribution varies with heterogeneously shaped and sized 

polygons across space. Given this spatial characteristic, we will apply adaptive bandwidth 

for later GWR regression. 

The assumptions that are needed for OLS are still needed for spatial error regression 

models (except that of spatial independence of observations). The mathematical 

relationships between each predictor in the equation and the dependent variable are linear. 

And there should not be multicollinearity among different independent predictors. As for 

residuals, they are random and normally distributed. Residuals should have 

homoscedasticity, which means variance of residuals remain constant at any value of 

independent predictors. In addition, GWR models require at least 300 observations. For 

multicollinearity violation in local regressions, several variables will have similar patterns 

of clusters in a certain region, which can be told from the condition number in the attribute 

table. If the condition number is larger than 30, equal to Null, or equal to 

1.7976931348623158e + 308, the regression results are unreliable due to local 

multicollinearity. 

To test whether the parameter estimates are significantly different from zero, the ratio of 

the beta coefficients and the standard error estimates for each location will be applied 

instead of p-values. Because local regressions estimate models for each location and each 

location need to do several significance tests, which will lead to a tremendous amount of 

significance tests followed by many tests that return a significant result simply by chance 

(i.e., type I error). Although there are ways to adjust for this multiple testing problem, those 
ways are not currently implemented in ArcGIS Pro.  

 

3) Results 

a) Spatial Autocorrelation 

The Moran’s I of 0.794 indicates that there is significant (p=0.001) spatial autocorrelation 

in the dependent variable, LNMEDHVAL. Figure 1 is a histogram comparison of the global 
Moran’s I of LNMEDHVAL and the random permutations. 
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To further explain this relationship, Figure 2 illustrates the relationship between 

LNMEDHVAL and its spatial lags. If there were no spatial autocorrelation in the dataset, we 

would expect to see a horizontal line and a cluster of data around the origin of the graph. 

However, this is not the case, and there is a clear positive relationship between the 
LNMEDHVAL and its spatial lags. 

Figure 3 illustrates the distribution of significant areas of spatial autocorrelation within 

the dependent variable. All colored block groups have significant spatial autocorrelation, all 

greyed block groups do not. The values are mapped by the value of LNMEDHVAL-significance 

level of spatial autocorrelation. For instance, the pink values refer to areas which have high 

house values, and lower significant spatial autocorrelation. 

 

The clustering of high value homes in areas on the border of the urban and suburban parts 

of the city. These are areas which have been traditionally segregated and populated by white 

people. Conversely, the clustering of low value homes tends to center around denser and 

more urbanized parts of the city which have been traditionally segregated and populated by 

people of color. 
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b) A Review of OLS Regression and Assumptions 

The OLS output from GeoDa and R are present as follows. From Table 1, we can see that 

the regression outputs indicate that all predictor variables (PCTBACHMOR, PCTVACANT, 

PCTSINGLES, AND LNNBELPOV100) are highly significant (p<0.0001 for all variables). And 

more than 60% of the variance in the dependent variable is explained by the model (R2 and 

Adjusted R2 are 0.6929 and 0.6922 in R and 0.6623 and 0.6615 in GeoDa, respectively). The 

low p-value (p<0.0001) associated with the F-ratio indicates that we can reject the null 
hypothesis that all model coefficients are 0. 

 

 

From the diagnostics in GeoDa, we can see the results for heteroscedasticity of The 

Breusch-Pagan Test, The Koenker-Bassett Test, and The White Test. All these three tests are 
consistent with each other and indicate a problem with heteroscedasticity. 

Also, the Jarque-Bera test in GeoDa examines the Null Hypothesis that the residuals are 

from a normal distribution. From table 1, we can see that p value of the Jarque-Bera test is 

significant important indicating that we can reject the Null Hypothesis of normality for the 

alternative hypothesis of non-normality. 

To examine the spatial autocorrelation of this OLS Regression, the scatterplot of 

OLS_RESIDU by WT_RESIDU are presented in the following. (The right one is the graph from 

GeoDa and the other one is from R) We can see from the picture that the value of ρ (referred 

to as Slope b in the results) is 0.733 and it is significant important. That indicates a significant 
spatial autocorrelation in the OLS Regression model. 

To further examine spatial autocorrelation, the Moran’s I scatterplot and results from the 

999 permutations for OLS regression residuals are plotted as follows. From the graphs, we 

can see a significant spatial autocorrelation in this OLS residuals. It is problematic and we 

will attempt to account for that in the following practices in spatial model regressions. 
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c) Spatial Lag and Spatial Error Regression 

i) Spatial Lag Regression 

The spatial lag regression output from GeoDa and R is presented below. From Table 2, we 

can tell that the coefficient of the spatial lag, 𝜌 is 0.62, and it is significantly significant (p < 

0.0001). This indicates that the unexplained variation in median house values is highly 

(positively) correlated. Further, we can see that all predictor variables (PCTBACHMOR, 

PCTVACANT, PCTSINGLES, AND LNNBELPOV100) are statistically significant (p<0.0001 for 

all variables). However, compared to the OLS AIC (1271.8), the spatial lag regression is 

neither better nor worse (AIC = 1271.8).  

 

The Breusch-Pagan test, as observed in the GeoDa results summary, indicates that there 

is an issue with heteroscedastic residuals (p < 0.0001). All these three tests are consistent 
with each other and indicate a problem with heteroscedasticity. 

 

To determine if there is spatial autocorrelation in the residuals of the spatial lag 

regression, the Global Moran’s I histogram was created. The red line indicates the location of 

the actual Global Moran’s I from the spatial lag model, and the gray bars indicate the 

permutations. Further, to examine for the occurrence of local spatial autocorrelation, the 

scatterplot of LAG_RESIDU by spatially lagged LAG_RESIDU are presented in the following. 

GeoDa 
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We can see from the picture that the residuals of the spatial lag regression tend to be much 

less spatially autocorrelated than the OLS residuals. 

 

 

Overall, while the spatial lag is does not deviate from OLS regression regarding the Akaike 

Information Criterion, it performs much better at accounting for the spatial processes that 

exist within the data, as there is much less spatial autocorrelation in the residuals. 

ii) Spatial Error Regression 

The Spatial Error Regression output from GeoDa and R are present as follows. From Table 

3, we can tell that the coefficient of the spatial parameter λ is 0.81, and it is significantly 

important. This shows that the unexplained variation in median house values is highly 

(positively) correlated. 
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After introducing the spatial parameter λ, we can see that the remaining terms 

(LNNBELPOV, PCTBACHMOR, PCTSINGLES, and PCTVACANT) all are still significant, even 

some coefficients of predictors change when comparing to the result in OLS Regression. 

However, based on the Breusch-Pagan test result in the GeoDa, which is still significantly 

important, the spatial lag regression residuals are still heteroscedastic. 

We can compare the Spatial Error regression and OLS regression based on the Akaike 

Information Criterion/Schwarz Criterion, the Log Likelihood, and the Likelihood Ratio Test, 

to see whether spatial error regression has improved the model. In the Akaike Information 

Criterion/Schwarz Criterion, the value of the spatial error model is nearly half of the OLS 

Regression, indicating that the spatial error model is way better. For the Log Likelihood, the 

spatial error model is also nearly half of the OLS Regression, validating that the spatial error 

model is way better. For the Likelihood Ratio Test, the p value is significant important, so the 
spatial model is better than the OLS Regression model. 

To determine if there is spatial autocorrelation in the residuals of the spatial lag 

regression, the Global Moran’s I histogram was created. The red line indicates the location of 

the actual Global Moran’s I from the spatial error model, and the gray bars indicate the 

permutations. 
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The Local Moran’s I scatterplots of spatial error regression residuals and OLS regression 

residuals are plotted respectively in the following left and in the following right. From the 

scatter plots, we can see the value of Moran’s I for spatial error model is less than the value 

of the OLS model and is closer to 0. That means there seem to be less spatial autocorrelation 
in these residuals than in OLS residuals. 
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Overall, based on the Akaike Information Criterion/Schwarz Criterion, the Log Likelihood, 

the Likelihood Ratio Test, and the Moran’s I scatterplots, we can confidently say the spatial 
error regression model is doing better than the OLS regression model. 

Then which model is better, the Spatial Lag Regression model or the Spatial Error 

Regression model? Since the models are not nested (i.e., neither method is a special subtype 

of each other), the likelihood-ratio test cannot be used for this comparison. However, it is OK 

to compare the two non-nested models based on Akaike Information Criterion and the 

Schwarz Information Criterion. From the regression results that are listed above, we can see 

that the value of the Akaike Information Criterion for Spatial Lag Regression model is 523.48, 

and the value for Spatial Error Regression model is 755.381. That says, the Spatial Lag 

Regression model is doing better than the Special Error Regression model. When it comes to 

the Schwarz criterion, the value for Spatial Error Regression model is 782.631, and the value 

for Spatial Lag Regression model is 556.18, also indicating the Spatial Lag Regression model 
is better. 

 

d) Geographically Weighted Regression 

Given that the overall R-squared of the GWR regression is 0.85 (both in R and ArcGIS) 

while the R-squared of the OLS regression is only 0.66, the GWR regression appears to 

explain more variance than the OLS one in the dependent variable. In addition, the Akaike 

Information Criteria of GWR is 269 in R (ArcGIS doesn’t provide AIC), which is comparatively 

lower than the AIC of OLS (1433), Spatial Lag (470), and Spatial Error (731) models. 

Considering that the lower the AIC is the better the model is fitted, the GWR model does the 

best job here. The regression summary for GWR in the R and the supplementary table of it 

on ArcGIS are shown below. 

 

The global Moran’s I value of GWR residuals are 0.029 and 0.021, respectively in R and 

ArcGIS, which are closer to than global Moran’s I of these residuals in OLS , Spatial Lag and 

Spatial Error regressions. Thus, there’s less spatial autocorrelation in residuals of the GWR 
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regression, indicating GWR has estimated more spatial relations for this data. Here are 

Moran’s I results, both the Moran scatterplot and the significance test both from R and 
GeoDa. 
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Now, explore local regression results, a screenshot of the attribute table and maps of the 

ratio of the beta coefficients and the standard error estimates, and take the observation at 

the first row as an example. For the first observation, 36.58% of variance are explained in 

𝐿𝑁𝑀𝐸𝐷𝐻𝑉𝐴𝐿 with a Local R-squared of 0.3658. For coefficients, when 𝑃𝐶𝑇𝑉𝐴𝐶𝐴𝑁𝑇, 

PCTBACHM, LNNBELPOV100 and 𝑃𝐶𝑇𝑆𝐼𝑁𝐺𝐿𝐸𝑆 are all 0, 𝑃𝑅𝐸𝐷𝐼𝐶𝑇𝐸𝐷 LNMEDHVAL = 

INTRCPT = 10.29. As PCTBACHM increases by 1 unit (1%), 𝐿𝑁𝑀𝐸𝐷𝐻𝑉𝐴𝐿  increases by 

(𝑒0.048 − 1) ∗ 100%; as 𝑃𝐶𝑇𝑉𝐴𝐶𝐴𝑁𝑇 increases by 1 unit (1%), 𝐿𝑁𝑀𝐸𝐷𝐻𝑉𝐴𝐿 decreases by 

(𝑒0.004 − 1) ∗ 100%; as 𝑃𝐶𝑇𝑆𝐼𝑁𝐺𝐿𝐸𝑆 increases by 1 unit (1%), 𝐿𝑁𝑀𝐸𝐷𝐻𝑉𝐴𝐿 increases by 

(𝑒0.001 − 1) ∗ 100% ; as LNNBELPOV100 increases by 1% , 𝐿𝑁𝑀𝐸𝐷𝐻𝑉𝐴𝐿  decreases by 

(1.010.070 − 1) ∗ 100%. At last, Condition number 564.61 > 30, so it performs poorly in terms 

of multicollinearity. And most of the condition numbers in this regression are larger than 30, 

indicating that the assumption of local multicollinearity is violated in most places. 

 

To evaluate how local regressions have been fitted, map the local R-squared values for 

GWR. As the choropleth map attached below, the GWR model fits poorly in the central section 

of Philadelphia and west Philadelphia with low local R-squared values, while most parts of 

Philadelphia are well fitted, especially the area of Mt. Airy and its surrounding neighborhood. 
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Then, test the local significance of the intercept and four predictors. Below are maps of 

the ratio of the beta coefficients and their standard error estimates, where the breaks and 
color schemes are as follow: 

• Dark Blue: Coef/SE <= -2, A negative relationship with the dependent variable 

that’s possibly significant 

• Light Blue: - 2 < Coef/SE <= 0: A negative relationship with the dependent variable 

that’s likely not significant 

• Pink: 0 < Coef/SE < 2: A positive relationship with the dependent variable that’s 

likely not significant 

• Dark Red: Coef/SE >= 2: A positive relationship with the dependent variable that’s 

possibly significant 

According to this criteria, all intercept values are significant and have positive 

relationships with LNMEDHVAL, and most PCTBACHM values have positive relationships 

with LNMEDHVAL but only half of them are significant. For 𝑃𝐶𝑇𝑉𝐴𝐶𝐴𝑁𝑇, LNNBELPOV100 

and 𝑃𝐶𝑇𝑆𝐼𝑁𝐺𝐿𝐸𝑆 values, there are both positive and negative relationships with  
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LNMEDHVAL among different locations in Philadelphia, and only coefficient values of some 

locations are significantly different from 0. 

 

4) Discussion 

In this study, we utilized R, GeoDa, and ArcGIS Pro to compare OLS, Spatial Lag, Spatial 

Error, and Geographically Weighted regressions to build models which predict the median 

house value for census tracts in Philadelphia. We utilized several diagnostic methods for 

comparing the models such as Global Moran’s I, Local Moran’s I, the Akaike Information 

Criterion (AIC), the log-likelihood, and the likelihood ratio.  

Based on our results, GWR is the most effective method as it accounts for most of the 

spatial autocorrelation that exists in the original dataset. The Global Moran’s I for the GWR 

is 0.02. Additionally, the AIC for the GWR is the lowest value (269) which indicates a well fit 

model. The spatial lag regression is the next most effective model with a Global Moran’s I of 

-0.08, indicating slight negative spatial autocorrelation, and an AIC of 523 (values differ 

based on software used). The spatial error regression is the next most effective model with 

a Global Moran’s I of -0.094 and an AIC of 755.38. Finally, the OLS regression is the least 

effective with a Global Moran’s I of 0.312 and an AIC of 1432.  
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In the various models, we observed similar distributions of significant local spatial 

autocorrelation in the residuals. The spatial models (GWR, spatial lag, and spatial error) 

performed poorly for block groups that were on the extremes of the median house values. 

For instance, there was statistically significant spatial autocorrelation in the residuals of the 

GWR model in block groups in Northwest and Center City, Philadelphia, areas which 

traditionally have relatively high and low median house values, respectively. The 

observations made about the GWR model are also true for the spatial lag model and spatial 

error model. Finally, when comparing the spatial autocorrelation in the residuals, it is 

apparent that the OLS model is unable to account for spatial autocorrelation in Northeast 

Philadelphia, an area that was accounted for by the other models.  

Regarding limitations of the model, the Jarque-Bera test validating the assumption of 

normal residuals, is not met in the OLS Regression model. Additionally, the assumption of 

homoscedasticity was violated for all models per the Breush-Pagan Test for 

heteroscedasticity (all were statistically significant, p < 0.0001). Finally, even the GWR model 

which performed the best, did not fully account for all of the spatial autocorrelation as is 
evident by the Local Moran’s I for the residuals.  


